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Abstract

Phylogeographic patterns of freshwater fishes in coastal regions are highly susceptible to eustatic sea level changes associated with
Pleistocene glaciations. In this context, the Plain Coastal Gulf in northeastern Mexico represents an ideal study area due to its low
elevation. Herein, we compare the phylogeographic structures of two cichlid species of the genus Herichthys Baird et Girard, 1854
widely distributed in the Panuco—Tamesi system in northeastern Mexico using two mitochondrial markers. The species studied
were: Herichthys carpintis (Jordan et Snyder, 1899) and Herichthys pantostictus (Taylor et Miller, 1983). We estimate their genetic
diversity, gene flow, and demographic history and perform biogeographic reconstructions using a Bayesian computation approach
and environmental niche modeling. The biogeographic reconstruction suggests a different history for each species. Environmental
niche modeling indicates that both species experienced a demographic expansion during the Pleistocene but responded differently
to Pleistocene climatic changes. In summary, their current sympatric distribution could be the outcome of contemporary and not
historical processes reflecting a pseudo-incongruent pattern.
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Introduction

Evolutionary biogeography seeks to reconcile dispersal
and vicariance paradigms through five stages that recon-
struct a geobiotic scenario that attempts to explain biotic
component evolution based on geological data (Morrone
2007). One stage involves dating the vicariant events us-
ing molecular clocks and phylogeographic studies. Phylo-
geography deals with how genetic lineages are arranged

through geographic space (Avise 2009). Therefore, com-
parative phylogeography studies are relevant since they
enable us to interpret how different cenocrons (biotic ele-
ments) have been integrated into a horobiota (a snapshot
of a biota in a particular time) (Morrone 2020). In a com-
parative phylogeographic study, three different scenarios
could arise. First, in a concerted response, the codistrib-
uted species respond similarly to geological and climat-
ic events leading to a congruent pattern. Second, in an
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independent response, the codistributed species show in-
dependent responses to simultaneous regional processes.
Third, in a multiple response, the species could show sim-
ilar spatial congruence but different temporal frames lead-
ing to a pseudo-congruent pattern or different responses
both in space and time leading to a pseudo-incongruent
pattern (Bagley and Johnson 2014). The cooling and heat-
ing periods experienced by the planet during the Pleisto-
cene led to speciation and extinction events and changes
in the distributional patterns of species worldwide (Hewitt
1996, 2000, 2004). However, Pleistocene glaciations also
affect populations, leaving genetic signatures that are
traceable through phylogeographic studies (Hewitt 2003;
Lister et al. 2005; Comte and Grenouillet 2015).

These phenomena are more evident in freshwater eco-
systems due to climate changes and geological factors,
such as volcanism and orogenesis, playing a fundamen-
tal role in drainages rearrangement, leading to isolation,
reconnection, and formation of new rivers and lakes
(Bermingham and Martin 1998; Waters and Wallis 2000;
Rincon-Sandoval et al. 2019). Their effects are particu-
larly apparent in species distributed toward the coastal
shoreline (Abreu et al. 2020; Pio and Carvalho 2021) due
to the Pleistocene’s eustatic sea level changes leading to
the exposition and covering of the continental shelf, pro-
moting both population connection and isolation (Hewitt
2004; Lambeck and Chappell 2001).

Due to Mexico’s complex geologic and paleohydro-
graphic history, its freshwater fishes are ideal for phylo-
geographic studies (Marshall and Liebherr 2000; Mor-
rone 2004; Dominguez-Dominguez and Pérez-Ponce de
Leén 2009), their study has already led to several pub-
lished papers in selected taxonomical groups, including
atherinopsids (Bloom et al. 2009; Garcia-Martinez et al.
2020), characids (Strecker et al. 2004; Ornelas-Garcia et
al. 2008; Hausdorf et al. 2011; Coghill et al. 2014), cy-
prinids (Garcia-Andrade et al. 2021), and poecilids (Ma-
teos et al. 2002; Chen and Borowsky 2004; Mateos 2005;
Gutiérrez-Rodriguez et al. 2007; Bagley et al. 2013).

Cichlids are one of the most diverse clades of fresh-
water fishes in Mexico. However, despite their species
abundance, phylogeographic studies with them are scarce
(e.g., Barluenga and Meyer 2010; Bagley et al. 2017;
McMahan et al. 2017). The genus Herichthys Baird and
Girard, 1854 represents an excellent model for evolution-
ary and biogeographic studies since it includes species
of wide and restricted geographic distributions that have
been extensively studied in recent years, from systemat-
ics to molecular clocks and biogeography among others
(Pérez-Miranda et al. 2018, Pérez-Miranda et al. 2020).

In this study, we compared the phylogeographic struc-
tures of two cichlid species of the genus Herichthys that
have a wide geographic distribution in the Panuco—Tamesi
system: Herichthys carpintis (Jordan et Snyder, 1899)
and Herichthys pantostictus (Taylor et Miller, 1983). The
latter species was included in the past in the genus Nos-
feratu (see De la Maza-Benignos et al. 2015), however, as
pointed out by Ri¢an et al. (2016), the shape of the teeth

that are the diagnostic character of the genus is a plesio-
morphic state for the Theraps—Parannetroplus clade and
it is also present in some species of the genus Herichthys
turning the genus Nosferatu in a paraphyletic and not nat-
ural group. Therefore, all species previously placed in the
genus Nosferatu by De la Maza-Benignos et al. (2015)
should now be included in the genus Herichthys (see Fric-
ke et al. 2023; Froese and Pauly 2023; WoRMS Editorial
Board 2023). The Panuco—Tamesi system drains part of
the Gulf Coastal Plain in northeastern Mexico covering a
surface of near 157 752 km? and comprises 11 sub-basins
(FAO 2022). This vast region is characterized by altitudes
ranging from 0 to 600 m above sea level and was prone
to the effects of marine transgressions and regressions
during the Pleistocene glaciation periods (Alvarez 1961;
Bagley et al. 2013). While both species have a sympatric
distribution throughout most of their geographic range,
their current geographic distribution patterns are likely
the result of different evolutionary and biogeographic
histories (Pérez-Miranda et al. 2020). While H. carpin-
tis’ sister species, Herichthys tepehua De la Maza-Be-
nignos, Ornelas-Garcia, Lozano-Vilano, Garcia-Ramirez
et Doadrio, 2014 is distributed towards the coastline,
H. pantostictus’ sister group, comprising Herichthys bar-
toni (Bean, 1982) and Herichthys labridens (Pellegrin,
1903), is distributed inland (Pérez-Miranda et al. 2018).
Therefore, we expected these species to show a pseu-
do-incongruent pattern due to different past distributions
and recent community assemblies with a scarce or null
shared history between them. We test our prediction by
evaluating the effect of Pleistocene glaciations on the col-
onization and connectivity of H. carpintis and H. pantost-
ictus populations by determining the numbers and ages
of their genetic populations, the gene flow among them,
and their demographic history and colonization processes
using two mitochondrial markers, COI, and D-loop.

Material and methods

Sampling and genetic analysis. The specimens of
Herichthys carpintis and Herichthys pantostictus used
were collected between 2000 and 2016 and covered the
known geographic distribution of both species (Suppl.
material 1). Tissue samples were obtained from 96 H.
carpintis individuals and 60 H. pantostictus individuals.
DNA extraction was performed according to the proto-
col of Aljanabi and Martinez (1997) for amplifying mi-
tochondrial markers cytochrome oxidase subunit 1 (COI)
and D-loop. For the mitochondrial COI marker, we com-
plemented our H. carpintis data set with an additional
104 previously generated sequences available in two Bar-
code of Life Data (BOLD) projects (FFPTR and HBGM).

Polymerase chain reactions (PCRs) had a final vol-
ume of 25 pL. For the COI marker, we used the primers
reported by Ward et al. (2005) with the conditions report-
ed by Ledn-Romero et al. (2012) to amplify a fragment
of 589 bp for the D-loop marker, we designed FPM-F
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(5'-CTTTGGGAGTTAGGGGTGA-3") and FPM-R
(5'-CACTGAAGATGTTAAGACGG-3') primers to am-
plified a 687 bp fragment in a reaction mix comprising
1x PCR buffer, 3 mM MgCl,, 200 pM dNTPs, 0.15 uM
of each primer, 40 ng of DNA template, and 1 U of Go-
Taq (Invitrogen) using the following conditions: initial
preheating at 95°C for 5 min, followed by 35 cycles
of denaturing at 96°C for 1 min, annealing at 60°C for
1.5 min, and extension at 72°C for 1 min, with a final
5 min extension at 72°C. PCR products were purified,
and both strands were sequenced at the Laboratorio
Nacional de Genomica para la Biodiversidad campus
(Irapuato, México).

Sequences were aligned with Clustal X version 2.0
(Larkin et al. 2007) and edited in Seaview (Gouy et al.
2010). The final numbers of available sequences were
195 for COI and 73 for D-loop in H. carpintis and 41 for
COI and 54 for D-loop in H. pantostictus.

Population genetics. We are aware of the potential ca-
veats of dealing with sample size and their effect on
genetic diversity and other population genetics estima-
tors. For the aforementioned, we evaluate if the number
of analyzed individuals was enough using the function
HACSim s implemented in the R library HACSim to
build an accumulation curve and to estimate the R-value
that represents the estimated fraction of species haplotype
diversity captured from sampling (Phillips et al. 2020).
After that, we assessed the number of genetic clusters
(k) (hereinafter referred to as populations) using the “opti-
mise.baps” option in the fastbaps library (Tonkin-Hill et al.
2019) of the R statistical software version 4.0.4 (RStudio
Team 2020). Each population’s diversity parameters, such
as haplotypic (/) and nucleotidic (w) diversity, were esti-
mated using Arlequin v.3.5.2 (Excoffier and Lischer 2010).
A time-calibrated phylogenetic tree was estimat-
ed for each species and molecular marker in BEAST v
1.7.5 (Drummond et al. 2205), to date the trees, we used
secondary calibration points previously estimated for
H. carpintis and H. pantostictus (see Pérez-Miranda et
al. 2020) which used different calibration points includ-
ing fossil record and vicariant events (but see also Ri¢an
et al. 2013); for H. carpintis, we used the split with her
sister species H. tepehua (outgroup in the phylogeny) oc-
curred 2.5 Ma, meanwhile, for H. pantostictus we used
its divergence time against her sister clade (H. bartoni +
H. labridens) (outgroup in the phylogeny) occurred 6.5
Ma. Four independent runs of 10 million generations,
sampling every 10 000 generations, were performed
assuming a GTR substitution model, a strict molecular
clock, and a Yule speciation model; convergence among
chains was assumed if the ESS values were higher than
200, then, the trees were summarized using LogCombin-
er v.1.7.4 (Drummond and Rambaut 2007), and a con-
sensus tree was constructed after a 25% burn-in using
TreeAnotator v2.6.6 (Drummond and Rambaut 2007).
To evaluate gene flow levels among populations, we
used the Bayesian approach implemented in migrate

v.4.4.2 (Beerli 1998; Beerli and Felsenstein 2001) using a
static heating scheme with four temperature chains (1, 1.5,
3, and 1 000 000), with each analysis comprising 10 000
000 genealogies sampled every 1000 generations after a
10% burn-in. We used the full matrix model as a null hy-
pothesis for each species and molecular marker and pos-
tulated several gene flow models following Miller et al.
(2005). Since H. pantostictus is mainly distributed inland,
its colonization process should be from inland towards the
coastline. In contrast, since H. carpintis is mainly distrib-
uted along the coastal shoreline, its colonization process
should be from the coastline towards the inland.

Ten gene flow models were evaluated for H. pan-
tostictus (five per molecular marker), and 11 models
were evaluated for H. carpintis (six for COI and five for
D-loop; see Suppl. material 2 for complete details). We
compared gene flow models using a Bayes Factor test
with the Bezier approach’s marginal likelihood (Beerli
et al. 2019) using the BF function in R’s mfraceR library
(Pacioni et al. 2015).

Effective population size changes were inferred using
Tajima’s D and Fu’s F_ tests in Arlequin v.3.5.2 (Excof-
fier and Lischer 2010). In addition, effective population
size changes through time were inferred from Bayesian
skyline plots (BSPs) created using BEAST v1.7.5 (Drum-
mond et al. 2005) with a lumping approach since coales-
cent-based tests are extremely sensitive to sample size
(Heller et al. 2013). The BSPs plots were created using
four Markov chains of 10 000 000 generations, sampled
every 1000 generations, and a strict molecular clock with
the same calibration points mentioned above. The chains’
results were combined using LogCombiner v1.7.4 after
a 25% burn-in (Drummond and Rambaut 2007), and the
BSPs were plotted in Tracer v1.5 (Rambaut et al. 2018).

Biogeographic scenarios and niche modeling. We test-
ed two biogeographic scenarios for the colonization routes
of each species using the approximate Bayesian computa-
tion (ABC) approach implemented in the DIYABC soft-
ware (Cornuet et al. 2010). Scenario one assumed a coast-
al-to-inland colonization process. Scenario two assumed
an inland-to-coastal colonization process. The scenarios
were compared using reference tables simulating 1 x 10°
datasets based on haplotype numbers and the Tajima and
Fu test values. First, considering the reference tables’ first
10 000 scenarios, we used a principal component analysis
to evaluate whether the generated dataset’s distribution
approached that of the observed dataset. Then, a normal-
ized Euclidean distance between the simulated and the
observed datasets was calculated to determine the most
plausible scenario. Finally, considering the 1% of gen-
erated datasets closest to the observed datasets, a direct
and logistic regression was used to estimate the posterior
probability and the type I and type II errors for each sce-
nario with a 95% highest posterior distribution (HPD).
Therefore, the most probable scenario was chosen based
on the highest posterior probability and the absence of
overlap in the HDP intervals (Cornuet et al. 2010).
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Finally, we used an environmental niche model (ENM)
approach to evaluate the possible effects of Pleistocene
glaciations on both species’ demographic history. The
suitability areas for each species were determined using
the maximum entropy algorithm implemented in Max-
ent v.3.2.19 (Phillips et al. 2006) applied to the Mejia et
al. (2022) collecting dataset. First, the spThin R library
(Aiello-Lammens et al. 2015) was used to reduce spatial
autocorrelation by pruning collection records that are <1
kilometer, leaving a total of 205 collection records for H.
carpintis and a total of 124 collection records for H. pan-
tostictus. Then, the geographic space M for each species
was defined with the Pfafstetter HydroBasin levels 6 and
7 (Lehner and Grill 2013) in QGIS v.3.16.5 (QGIS De-
velopment Team 2009). The 19 WorldClim bioclimatic
variables (Hijmans et al. 2005) were downloaded for the
current period. The paleoclimatic projections used the
MPI-ESM-P general circulation model in three temporal
frames: the last interglacial period (LIG; 120 ka), the last
glacial maximum (LGM; 21 ka), and the mid-Holocene
(6 ka). Additionally, three topographic variables (aspect,
topographic position index, and slope) were calculat-
ed based on a digital elevation model from Hydrosheds
(Lehner et al. 2008) using the terrain function of the ras-
ter R library (Hijmans and Van Etten 2012). The number
of variables in the ENM was reduced using the variance
inflation factor (VIF) with the vifcor and vifstep functions
in the usdm R library (Naimi et al. 2014).

The ENMs were constructed using the dismo (Hijmans
et al. 2020), ENMeval (Muscarella et al. 2014), rmaxent
(Baumgartner et al. 2017), and kuenm (Cobos et al. 2019)
R libraries. We used 30% of the collection records for
model construction and the remaining 70% for model
training with several combinations of feature classes (lin-
ear, quadratic, product, and threshold) and regularization
multipliers (1, 2, 5, 10, 15, and 20; Warren and Seifert
2011). Finally, the best ENM models were selected using
the Akaike information criteria (Akaike 1974) and partial
receiver operating characteristic (ROC) curve values over
1000 bootstraps (Peterson and Nyari 2008).

Results

Population genetics. The new sequences of Herichthys
carpintis and Herichthys pantostictus, generated for this
study, were deposited in GenBank under the accession
numbers OP738881-OP738896; OP738385-0OP738395,
and OP751419-0OP751525 (Suppl. material 3). The R
values recovered from the HACSim curves were higher
than 0.9 for both species and molecular markers (Suppl.
material 4) and suggest that the number of individuals
analyzed was enough to recover the genetic diversity of
both species.

The fastbaps analysis recovered three genetic clusters
(populations) foreachmolecularmarker. In H. pantostictus,
based on the COI marker, population one (Guayalejo)
comprised five individuals and had a geographic centroid

near the coastal shoreline at the northern limit of its dis-
tribution. Population two (Panuco) comprised 20 individ-
uals with a geographic centroid located near the center of
its geographic distribution. Population three (Tanconchin)
comprised 16 individuals with a geographic centroid in
the south of its distribution (Fig. 1). Based on the D-loop
marker, population four (Tamesi) comprised 23 individu-
als and had a geographic centroid toward the north of its
distribution. Population five (Valles) comprised 19 indi-
viduals and had a geographic centroid at the center of its
distribution. Population 6 (Naranjos) comprised 12 indi-
viduals and had a geographic centroid toward the South of
its distribution (Fig. 1).

In H. carpintis, based on the COI marker, population
one (Ozuluama) comprised 90 individuals and had a geo-
graphic centroid in the south of its distribution. Popula-
tion two (Adjuntas) comprised 15 individuals and had
a geographic centroid in the center of its distribution.
Population three (Mante) comprised 90 individuals and
had a geographic centroid in the north of its distribution.
For the D-Loop marker, population four (Jaumave) com-
prised 50 individuals and had a geographic centroid in
the north of its distribution. Population five (Tempoal)
comprised 12 individuals and had a geographic centroid
in the center of its distribution. Population six (Gallinas)
comprised 11 individuals and had a geographic centroid
in the center of its distribution toward the inland (Fig. 1).

The h values in H. pantostictus populations ranged
from 0.542 in Tanconchin to 0.900 in Guayalejo for the
COI marker and from 0.544 in Valles to 0.573 in Tamesi
for the D-loop. In H. carpintis populations, / values were
low for the COI marker, ranging from 0.391 in Mante
to 0.664 in Ozuluama, but high for the D-loop marker,
ranging from 0.818 in Gallinas to 1.000 in Tempoal. The
n values were low in the majority of populations, ranging
from 0.001 for the COI marker in the H. carpintis Adjun-
tas and Mante populations to 0.026 for the D-loop marker
in the H. carpintis Jaumave population (Table 1).

The molecular clock analysis inferred similar root
ages for both markers in H. pantostictus (6.9 Ma, HPD
5.3-8.4 Ma). Population ages inferred based on the COI
marker were 0.69 Ma (HPD 0.2-1.1 Ma) for Guayalejo,
1.91 Ma (0.8-3.0 Ma) for Panuco, and 2.68 Ma (HPD
1.1-4.6 Ma) for Tanconchin. Population ages inferred
from the D-loop marker were 2.55 Ma (HPD 1.2-3.8 Ma)
for Naranjos, 2.15 Ma (HPD 1.0-3.3 Ma) for Valles, and
2.53 Ma (HPD 1.2-3.8 Ma) for Tamesi (Fig. 2). Howev-
er, they provided opposing ancient population geographic
locations. The youngest population was located toward
the coastline for the COI marker (Guayalejo) but inland
for the D-loop marker (Valles). In H. carpintis, the in-
ferred root ages were 1.9 Ma (HPD 1.5-2.3 Ma) with
the COI marker and 2.3 Ma (HPD 1.6-2.9 Ma) with the
D-loop marker. Population ages inferred based on the
COI were 1.47 Ma (HPD 0.9-1.9 Ma) for Ozuluama,
0.82 Ma (HPD 0.3 1-3 Ma) for Adjuntas, and 1.24 Ma
(0.7-1.7 Ma) for Mante. Population ages inferred based
on the D-loop marker were 1.9 Ma (HPD 1.5-2.3 Ma) for


http://www.ncbi.nlm.nih.gov/nuccore/OP738881
http://www.ncbi.nlm.nih.gov/nuccore/OP738896
http://www.ncbi.nlm.nih.gov/nuccore/OP738385
http://www.ncbi.nlm.nih.gov/nuccore/OP738395
http://www.ncbi.nlm.nih.gov/nuccore/OP751419
http://www.ncbi.nlm.nih.gov/nuccore/OP751525

Acta Ichthyologica et Piscatoria 53, 2023, 227-242

231

H. carpintis COI

H. pantostictus COI

A

|
0 200 400

H. pantostictus D-loop

A

i
| | |
0 200 400
H. carpintis H. pantostictus
® Ozuluama ® Guayalejo
® Adjuntas ® Panuco
® Mante ® Tanconchin
® Jaumave ® Tamesi
® Tempoal ® Valles
® Gallinas ® Naranjos

Figure 1. Geographic distribution of genetics populations of Herichthys carpintis and Herichthys pantostictus recovered by fast-
baps. Each circle represents the geographic centroid of the localities that contribute to the formation of the genetic group

Jaumave, 1.2 Ma (HPD 0.8-1.6 Ma) for Tempoal, and
0.7 Ma (0.3—-1.0 Ma) for Gallinas (Fig. 2). Therefore, the
youngest H. carpintis population was toward the inland
with both markers: Adjuntas with the COI marker and
Gallinas with the D-loop marker (Fig. 2).

The migrate analysis, which estimated gene flow, sug-
gested that the most probable model for H. pantostictus
based on the COI marker was colonization from inland
towards the coastline (maximum likelihood [ML] =
—1101.44, P = 0.964; Suppl. material 5), with Tanconchin



232 Pérez-Miranda et al.: Comparative phylogeography of two codistributed species

Table 1. Summary of the genetic diversity statistics recovered in Herichthys pantostictus and Herichthys carpintis for the mitochon-
drial molecular markers COI and D-loop.

Species Marker k n h T D F
H. pantostictus COlI Guayalejo 5 0.900 0.003 -1.094 —3.578"”
Panuco 20 0.447 0.002 -1.719" -34.080"
Tanconchin 16 0.542 0.003 —2.003” —27.6817
D-loop Tamesi 23 0.573 0.003 —2.006" —27.762*
Valles 19 0.544 0.003 —1.894" -28.311%>
Naranjos 12 0.848 0.007 0.483 -11.383">
H. carpintis COlI Ozuluama 90 0.664 0.004 1.209 1.530
Adjuntas 15 0.562 0.001 0.139 -10.7277*
Mante 90 0.391 0.001 -0.886 -14.130
D-loop Jaumave 50 0.995 0.026 -1.099 242277
Tempoal 12 1.000 0.018 0.487 —4.2417
Gallinas 11 0.818 0.007 -0.712 -2.855"

Pl=pP <0.05, ?=P < 0.001; k = number of genetic clusters recovered by fastbaps, n = number of individuals examined, / = haplotypic diversity,
= nucleotidic diversity, D = Tajima D test values, F's = Fu test values.

D-loop H. carpintis D-loop H. pantostictus

A

25
(1.2-3.8)

2.1 <
(1.0-3.3)
23
(1.6-2.9) ] 1.9 6.9 25
(1.2-3.8)

Tempoal

M\

(152.3) (5:3-8.4) @
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1.9 Mante Panuco

(1.5-2.3) 1 1.2 1.9
(0.7-1.7) (0.8-3.0)

6.9 Tanconchin
0.8 (5.4-8.4) 26
(0.3-1.3) (1.1-4.6)
m Outgroup
1.4
(0.9-1.9)

Figure 2. Molecular dated phylogeny of the genetic clusters recovered in Herichthys carpintis and Herichthys pantostictus for the
mitochondrial markers COI and D-loop. The median divergence time (Ma) and the HPD intervals (Ma) are shown below the nodes.
The colors represent the genetic clusters depicted in Fig. 1

giving rise to Panuco (M = 138; 95% HPD: 0-420), fol- (M =322;95% HPD: 8§3-357), followed by Tamesi giving
lowed by Panuco giving rise to Guayalejo (M = 138; 95%  rise to Naranjos (M = 415; 95% HPD: 0-483; Fig. 3).

HPD: 0-937; Fig. 3). However, for the D-loop marker, the The gene flow estimation for H. carpintis suggests
colonization process occurred from the distribution’s cen-  that the colonization process occurred from the coastline
ter to the North and then to the South (ML =—-1040.74, P=  toward the inland for the COI marker (ML = —3099.68,
0.668; Suppl. material 5), with Valles giving rise to Tamesi P = 1.000), with Ozuluama giving rise to Mante (M = 82;
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Figure 3. Gene flow among populations of Herichthys carpintis and Herichthys pantostictus according to the most probable
model recovered in Bayes Factor analysis (see Suppl. materials 2, 4 for complete details). Theta values and 95% HPD intervals are
shown within each genetic cluster. The values on the arrows show the number of migrants from one population to another with the
minimum and maximum values maximum in parentheses; solid arrows indicate a single gene flow event, dashed arrows indicated
recurrent gene flow (values below), after the initial migrant event (values above).

95% HPD: 0-193), followed by Mante giving rise to
Adjuntas (M = 315; 95% HPD: 0-677; Fig. 3). Finally,
for the D-loop, the colonization process occurred from
inland to the coastline (ML =—4002.55, P = 1.000), with
Gallinas giving rise to Tempoal (M = 448; 95% HPD:
67-286), followed by Tempoal giving rise to Jaumave (M
=275; 95% HPD: 3-530; Fig. 3).

The Tajima’s D and Fu’s F tests used to evaluate ef-
fective population size changes suggest a demograph-
ic expansion of the H. pantostictus populations, except
the Tajima tests for both COI and D-loop markers in
the Naranjos and Guayalejo populations (Table 1). Both

markers” BSPs provided similar results (Fig. 4). For the
COI marker, a slight demographic decrease occurred at
~1 Ma, followed by a sudden expansion at ~250 kya. Sim-
ilarly, for the D-loop marker, a demographic expansion
occurred at ~250 kya (Fig. 4). However, in H. carpin-
tis, the Tajima test was non-significant in all populations
with both markers. In contrast, the Fu test suggested an
expansion in all populations with both markers, except
for Ozuluama with the COI marker (Table 1). Finally,
both markers’ BSPs suggested a demographic expansion
starting at 100 kya for the COI marker and 1 Ma for the
D-loop marker (Fig. 4).
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Biogeographic scenarios and niche modeling. The
ABC analysis inferred opposing biogeographic histories
for H. pantostictus with each molecular marker. For the
COI marker, the most probable scenario suggests colo-
nization from the coastline to inland populations (sce-
nario one; logistic posterior probability = 0.596; 95%
HPD: 0.587-0.604). In contrast, scenario two was the
most plausible for the D-loop marker, suggesting an
inland to coastline colonization (P = 0.804; 95% HPD
= 0.797-0.813; Table 2; Suppl. material 6). However,
for H. carpintis, scenario one was inferred as the most
probable scenario for both molecular markers, suggest-

H. carpintis D-loop

NS

H. carpintis COI

100

Eefective Population Size

ing colonization from the coastline to inland (Table 2;
Suppl. material 6).

Finally, in the ENM, eight bioclimatic (BIO2, BIO3,
BIOS, BIO9, BIO13, BIO14, BIO15, and BIO18) and three
topographic variables were retained after the VIF test. The
potential geographic distribution models for H. pantostic-
tus and H. carpintis showed good performance (area un-
der the ROC curve [AUC] >0.8; AUC [partial ROC curve]
>1.1; Table 3) without over-adjustment (AUC difference
=0.143-0.190 for H. pantostictus and 0.159-0.178 for H.
carpintis; Table 3). For both species, most of the observed
variance was explained by the warmest month’s maximum

H. pantostictus D-loop

1007

H. pantostictus COI

Years Before Present (Ma)

Figure 4. Bayesian skyline plots (BSP) of Herichthys carpintis and Herichthys pantostictus recovered from the analysis of the
lumping populations of each of the molecular markers analyzed in this study.

Table 2. Scenarios used in the Approximate Bayesian computation (ABC) for the biogeographic history of Herichthys pantostictus
and Herichthys carpintis for the two molecular markers used in this study. The posterior probability for the direct and the logistic
regression as well as probability of type I and type II errors are indicated for each one of the postulated scenarios. Selected scenarios
are set in bold typeface.

. X Posterior probabilit Type I error Type II error
Species Marker Set Seenario et 95% HPD pLogistic : 95% HPD Diert Logistic Diryel:t Logistic
H. pantostictus COl _ Coast_Inland 1 0504 0.066,0.942 0596 0.587,0.604 0457 0463 0512  0.542

Inland-Coast 2 0496 0.058,0.934 0404 0.396,0413 0524 0514  0.645 0487

D-loop Coast-Inland 1 0376  0.000,0.801 0.195 0.187,0.203 0.588  0.642  0.745  0.789

Inland—Coast 2 0.624  0.199,1.000 0.805 0.797,0.813 0489 0514 0564  0.561

H. carpintis  COl  Coast_Inland 1 0.81  0.466,1.000 0997 0997,0998 0.401 0402  0.654  0.641
Inland-Coast 2 0.19  0.000,0534 0003 0.002,0003 0506 048  0.895  0.985

D-loop Coast-Inland 1 0522 0.084,0960 0.699 0.713,0.764 0.284  0.236  0.689  0.657

Inland-Coast 2 0478 0.040,0916 0301 0.237,0287 0311 0343 0716  0.764
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Table 3. Best Maxent model selected for Herichthys pantostictus and Herichthys carpintis for each one of the four periods con-
sidered in this study. LIG (Last interglacial 120 ky), LGM (Last Glacial Maximum (21 ky), mid Holocene (6 ky), Current. Best fit
MaxEnt model select for each of species for the four periods considered.

Period Parameter
AUC Diff. AUC AlCc pROC w Area [km?] Area [%)]
H. pantostictus
LIG 0.898 0.172 2912.548 1.458 0.750 148262.6 90.0
LGM 0.873 0.190 2954.457 1.267 0.895 129617 80.0
Mid Holocene 0.876 0.143 2941.143 1.555 0.889 109585 68.0
Current 0.885 0.174 2942.630 1.294 0.817 154917 96.0
H. carpintis

LIG 0.912 0.161 4079.705 1.246 1.000 119371.4 81.4
LGM 0.871 0.167 4129.669 1.395 0.968 118783 81.0
Mid Holocene 0.878 0.159 4118.810 1.294 0.998 113358 77.3
Current 0.859 0.178 4138.734 1.142 0.970 117648 80.3

ROC = receiver operating characteristic, AUC = area under the curve, Diff. AUC = mean difference in the AUC values between the training data

and the test data, AICc = Akaike information criterion, pROC = partial ROC values, w = Akaike weight, Area = total suitability area available for the

taxon in km? and expressed in km? or as a percentage of the total geographic extent (M).

temperature (BIOS = 14.441% for H. pantostictus and
15.506% for H. carpintis), the warmest quarter’s precipi-
tation (BIO18 =44.390% for H. pantostictus and 20.216%
for H. carpintis), and altitude (13.361% for H. pantostic-
tus and 50.890% for H. carpintis).

The geographic extension of suitable climatic areas de-
creased by 22% from the LIG to the mid-Holocene for
H. pantostictus (Table 3; Fig. 5 A—C). However, while
a similar pattern was inferred for H. carpintis, it had a
smaller decrease (Table 3; Fig. 5 E-G). Finally, an in-
crease in suitable areas was inferred for both species from
the mid-Holocene (6 kya) to the present, which was small
(3%) for H. carpintis and larger (28%) for H. pantostictus.

Discussion

Population structure and diversity. The number of ge-
netic populations recovered in a phylogeographic study
depends on several factors, such as the choice of mo-
lecular marker; the size of the fragment; sample size;
evolutionary processes such as selection, mutation, and
genetic drift; and the species’ intrinsic attributes related
to habitat and life history traits (Gavrilets 2003; Sofia et
al. 2006; Matsumoto and Hilsdorf 2009). In cichlids, we
must expect that species distributed in lakes will show a
near panmictic with a low population structure, and spe-
cies distributed in rivers, such as the species analyzed in
this study, will show a highly structured population. This
pattern does not always occur. For example, there are riv-
erine species without genetic structure, such as the South
American Gymnogeophagus setequedas Reis, Malabarba
et Pavanelli, 1992 (see Souza-Shibatta et al. 2018) and
other Neotropical cichlids found in rivers in South Mex-
ico (Elias et al. 2020). However, like this study’s results,
structured populations in riverine environments have
been recovered in species distributed in Mexico, such as
Trichromis salvini (Glnther, 1862) (see Elias et al. 2020)

and other South American species (Abreu et al. 2020; Pio
and Carvalho 2021).

One possible explanation for the presence of genetic
structure in this study could be associated with the Pleis-
tocene glacial periods with more arid environments, lead-
ing to water body desiccation and a lack of connectivity
and gene flow (Strecker et al. 2004; Gutiérrez-Rodriguez
et al. 2007). Then, during the interglacial period, wet-
ter conditions increase water levels, habitat connectiv-
ity, and gene flow (Elias et al. 2020). Another possible
explanation could be that both species analyzed in this
study had populations distributed toward the coastline. In
other South American tropical fish species, it has been
postulated that high sea level fluctuation due to Pleisto-
cene climatic changes led to sea level transgression and
regression. Therefore, when the sea level rose, the mouth
of the rivers was displaced inland, promoting population
isolation. In contrast, when the sea level dropped, the
influence of the freshwater could extend into the conti-
nental shelf, promoting connections between previously
isolated populations and gene flow (Abreu et al. 2020, Pio
and Carvalho 2021).

The potential effect of sea level fluctuations and
Pleistocene climatic changes could be masked by ENM
caveats. Most ENM algorithms identify suitability ar-
eas through correlations with species occurrence data,
ignoring factors such as habitat saturation, response to
environmental changes, and biotic interactions (Cordel-
lier and Pfenninger 2009; Wiens et al. 2009). Moreover,
they cannot deal with aquatic organisms since climatic
variables are optimized for terrestrial organisms, leading
to suitability area overestimations (Domisch et al. 2011;
Elith et al. 2011). Nevertheless, a potential Pleistocene
climatic change effect was effectively detected in Herich-
thys pantostictus through the 12% reduction in its suit-
ability area from LGM to mid-Holocene compared to the
4% reduction for Herichthys carpintis in the same period
(Table 3). Indeed, a close inspection of Fig. 5 showed that
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Figure 5. Potential geographic distribution of Herichthys carpintis and Herichthys pantostictus identified using an ecological niche
modelling under current bioclimatic conditions (1950-2000), as well as projections to three paleoclimatic periods (LIG, 120kya;
LGM; 21kya; Mid Holocene, 6 kya). Darker areas represent the pixels of major suitability conditions for the presence of the taxon.
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most of H. pantostictus’ lost areas were located toward
the coastline. Therefore, despite sympatry across most of
their geographic distribution, both species showed dif-
ferent responses to environmental variables, as has been
previously proposed based on the inequivalence in their
environmental niches (see table S3 in Mejia et al. 2022).

Low genetic diversity levels have been associated
with the absence (Olivieri et al. 2008; Craul et al. 2009;
McMabhan et al. 2017) or the presence of genetic struc-
ture (Agbebi et al. 2016). In this study, /# values ranged
from medium (0.390) to high (1.000) with low & values
(0.001-0.026), suggesting a sudden population expansion
(Duftner et al. 2006; Barluenga and Meyer 2010; Ferrei-
ra et al. 2015; Azevedo et al. 2017) that could cause the
absence of population genetic structure. However, this
apparent absence of genetic structure can be counteracted
by the cichlids’ life history traits, such as territoriality,
parental care, and philopatric behavior, which restrict the
displacement of individuals and allow new genetic vari-
ants to arise (Budaev et al. 1999; Sofia et al. 2008; Pereira
et al. 2009; Sefc 2011). Therefore, the genetic structures
of H. carpintis and H. pantostictus we inferred in this
study could be the result of populations that experienced
a demographic expansion and life-history-related traits.

Demographic history and ENMs. The BSPs for both
markers and species (Fig. 4) suggest a population expan-
sion, consistent with other neotropical cichlids (Barluen-
ga and Meyer 2010; Bagley et al. 2017; McMahan et al.
2017). The demographic expansion found in this study
could be attributable to the Pleistocene’s heating and
cooling periods, as has been proposed for other neotropi-
cal fishes (Bagley et al. 2013; McMahan et al. 2017, Bel-
tran-Lopez et al. 2018). Nevertheless, our study results do
not correspond with the results found in the ENM, where
a reduction in the available suitability areas was inferred
for both species since the LIG (Table 3). In H. carpintis,
the results suggest a slight reduction (4%) in the suitabili-
ty area from LIG to mid-Holocene (Table 3) but a drastic
reduction (22%) for H. pantostictus that must have im-
pacted its demographic history. However, this pattern was
not present in the BSP (Fig. 4).

These results could be attributable to different factors.
For H. carpintis, the ENM showed that since the LIG, the
most suitable areas for this species were toward the coast-
line and have existed up to the present (Fig. 5). Therefore,
sea level invasions and regressions during glacial periods
had a negligible effect on this species’ effective popula-
tion but did affect its spatial expansion. The gene flow
analysis and DIYABC scenarios suggest a coast-to-inland
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