
INTRODUCTION
Recruitment success in the majority of marine fish pop-

ulations is determined by processes occurring during larval
and juvenile stages (Houde 1987, Anderson 1988). To
investigate the complex processes affecting recruitment
success, appropriate methods are needed to quantify
growth, predation, starvation, and the characteristics that
distinguish survivors from the vast majority of individuals
that perish (Fuiman and Werner 2002). A set of methods
exist based on fish otoliths, which are biogenic calcium car-
bonate structures involved in fish hearing and orientation
(Campana and Neilson 1985, Campana 2005). These
otoliths applications include the back-calculation of growth
rate (Francis 1990), using the series of increment widths to
estimate growth trajectories (Maillet and Checkley 1991,
Paperno et al. 1997, Wang and Tzeng 1999, Oozeki and
Watanabe 2000), measuring marginal increment width to

estimate recent growth rate (Fey 2005, Aguilera et al. 2009),
and comparison of growth rates or size-at-age back-calcu-
lated for older (i.e., survivors) and younger (i.e., original
population) specimens, which allows for growth-depend-
ent survival evaluation (Meekan and Fortier 1996, Hare
and Cowen 1997, Takasuka et al. 2004).

Although much effort has been directed towards iden-
tifying the best methods to estimate fish size and growth
from otolith size and growth (Secor and Dean 1992, Sirois
et al. 1998, Morita and Matsuishi 2001, Finstad 2003),
questions remain about the true relation between somatic
and otolith growth rates. A common assumption is that
high correlation between otolith size and somatic size at
population level implies a high correlation between
otolith growth and fish growth at individual level. This
assumption, however, is not necessarily true. Several
studies have found that the otolith size-somatic size rela-
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Background. If a link exists between somatic and otolith growth, otolith size and microstructure analysis can be
a useful tool in studies of larval fish growth and condition—methods like growth back-calculation or marginal
increment width analysis can be employed. Because significance of that link may vary among species and can be
additionally modified by temperature, the aim of the present paper is to evaluate how sagittal otoliths of Atlantic
menhaden responded to somatic growth and temperature.
Materials and methods. Larval Atlantic menhaden, Brevoortia tyrannus (Latrobe, 1802) (age range: 20–120
days; length range: 14–35 mm SL), collected during 3 years were evaluated for length-at-age and groups of the
shortest and longest-at-age individuals (8% of sampled population in each group) were used in the analyses.
Similarly, otolith size-at-age estimated from sagittae length was evaluated and then compared with the earlier
estimated growth indices of larvae.
Results. Otolith growth rate (OGR) indicated growth differences among analysed larvae. Additionally, temper-
ature effect on OGR independent of somatic growth was detected for larvae that were short-at-age (i.e., the slow
growth group). For the fast grow group, temperature effect on OGR was insignificant.
Conclusion. Back-calculation of growth from otoliths of larval and early juvenile Atlantic menhaden is justified
but less accurate estimates can be expected for the slowest growing individuals due to the independent tempera-
ture effect on otolith growth.
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tion can be affected by other factors (e.g., the rate of
somatic growth and temperature, Mosegard et al. 1988,
Secor et al. 1989, Fey 2001, 2006, Takasuka et al. 2008).
In addition, Thorrold and Hare (2002) demonstrated in
a simple simulation that otolith and somatic size could be
positively correlated even if the relation between otolith
and somatic growth is negative. Otolith growth can also
continue in the absence of somatic growth resulting in
a weakening of the relation between fish- and otolith size
(Sogard 1991, Folkvord et al. 2004, Molony and Choat 2006).
Thus, applying otolith techniques to estimate size and
growth of larval and juvenile fish requires knowledge of
the dependence of otolith growth on somatic growth and
the role of other factors on this relation such as tempera-
ture and ontogeny (e.g., Hare and Cowen 1995, Paperno et
al. 1997, Tonkin et al. 2008, Aguilera et al. 2009).

Atlantic menhaden, Brevoortia tyrannus (Latrobe, 1802),
is important as a fishery target and as prey for many fish
and birds. It ranges, on the east coast of the United States,
from the central coast of Florida to Nova Scotia and
spawns in continental shelf waters almost year round
(Reintjes, unpublished*). Peak spawning, however, is
south of Cape Hatters and along North Carolina coast dur-
ing winter (Reintjes, unpublished*). Regarding otolith
microstructure analysis, Maillet and Checkley (1990) and
Ahrenholz et al. (1995, 2000) demonstrated that incre-
ments form daily in the otoliths of larvae and juveniles
kept under different temperature and feeding conditions,
even at temperatures < 3°C, in which increment widths
fall below 1 µm. Ahrenholz et al. (1995) concluded that
daily increments provide an accurate estimate of age of
menhaden up to 200 days. Further, Maillet and Checkley
(1990) demonstrated that otolith growth differed between
captive larvae up to 35 days of age subjected to feeding
treatments, suggesting a relation between otolith growth
and somatic growth. No validation for somatic growth-
otolith growth relation has been conducted for older captive
menhaden and none for a free living Atlantic menhaden. As
shown by Fey (2006) for two pelagic species co-occurring
in the same environment (herring and smelt), there is
a necessity to evaluate the somatic growth effect on otolith
growth independently for each species. Therefore, there is
still a need for such study for Atlantic menhaden.

The goals of this work were to evaluate the relation
between otolith growth and somatic growth of wild larval
Atlantic menhaden and to assess if and when temperature
affects this relation.

MATERIALS AND METHODS
Our goals were achieved through five steps: 1) collect

and age menhaden larvae, 2) select a subset of fast- and
slow growers, 3) estimate temperature histories of fish
from this subset, 4) determine otolith size for fish from
this subset, and 5) analyze the otolith growth–somatic
growth relation and assess the effects of growth and tem-
perature on this relation.
Fish collection. Larval Atlantic menhaden were col-

lected using a neuston net with a 2-m2 opening (2 × 1 m)

and 947-µm mesh deployed from a bridge platform at
Pivers Island, North Carolina from October through April
1992/93, 1993/94, and 1997/98 as they entered the
Newport River estuary (see Warlen 1994). Larvae were
preserved in 90% alcohol immediately after the tow.
A length correction formula (Fey and Hare 2005) was
used to calculate the live length of collected larvae. A sub-
sample of preserved fish from each sampling day was
measured to the nearest 0.01 mm (SL) providing a total of
> 2000 fish measured for the 3-year study.
Fish aging. Sagittal otoliths were extracted from the

entire subsample of fish, cleaned in distilled water, and
mounted on glass slides with DePeX mounting medium
(Electron Microscopy Sciences, Fort Washington, PA).
No additional otolith preparation was necessary.
Increments were counted three times on different occa-
sions using a light microscope (× 400 or ×1000) and
image analysis system (Optimas 6.0). The sample was
excluded if the difference in increment counts exceeded
10%; otherwise the average of the three counts was used
to estimate age. A total of 1862 fish was successfully
aged. A correction factor of 5 days was added to all age
estimates to account for the time between spawning and
first increment formation (Warlen 1992).
Selection of fast and slow growers. The length-at-

age data (age range: 20–120 days; length range: 14–35
mm SL) for all years were pooled and fit with a polyno-
mial function using generalized regression model (GLM)
(Fig. 1, n = 1.862, r2 = 0.708). The residuals of lengths-at-
age from the polynomial fit describe deviation from
expected values for each individual. We view these devi-
ations as a measure of the difference of growth of the indi-
vidual from the population growth trend. The absolute
values of the residuals (mm) were then converted to a per-
centage of the average length-at-age to allow for the pool-
ing of residuals across different ages. Based on these
residuals, two length-at-age groups of larvae were estab-
lished which we interpret as slow growing (residuals
< –8%) and fast growing (residuals > 8%). Slow and fast
growing fish were identified from a combined for all three
years dataset. Such procedure of distinguishing two
growth rate groups was related to requirements of anoth-
er study for which the data were used.
Temperature histories. The approximate tempera-

ture experienced by each individual was calculated as an
average value of: a) temperature at the time of collection,
b) temperature at the time of 2/3 of the age at collection,
and c) temperature at hatch. The approximate temperature
at hatch was estimated from equation based on reported
temperatures during spawning season (18.767 – 0.0126 ·
Hj + 0.0003 · Hj

2– 0.0000007381 · Hj
3; where Hj is the

Julian day i.e., day-of-the-year of hatch) (Warlen 1992,
Quinlan et al. 1999, Stegmann et al. 1999). Individual
hatch dates were back calculated as sampling-date minus
age. The calculated temperature at hatch varied between
18.1 (February) and 22.8°C (October). The temperature at
collection and 2/3 of the age at collection were estimated
from equations describing temperature variations within
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a given sampling year (temperature measured daily inside
the estuary were larvae were collected). It was assumed
that the temperature measured inside estuaries corre-
sponds relatively well to temperature near shore, at the
entrance to the estuary, i.e., temperature experienced
when larvae reach 2/3 of the age. Support for this assump-
tion may be found in Stegmann et al. (1999) presenting
satellite temperature maps and modelled distribution of
menhaden larvae recruiting to the Beaufort River (and
some others) estuary, as well as some temperature histo-
ries for different cohorts of larvae. Despite the obvious
crudeness of the calculation, our approach captures much
of the region’s seasonal temperature variability experi-
enced by larvae recruiting over extensive period of time.
Larvae advected from further north would have experi-
enced cooler temperatures, but this latitudinal variability
is small relative to the seasonal variability (Stegmann et
al. 1999) and therefore is excluded here. The calculated
average experienced temperatures varied between 11.9
and 19.1°C (Mean = 15.2°C, SD = 1.61) and correspond-
ed well to temperature histories presented for different
cohorts by Stegmann (1999).
Otolith growth determination. Otolith size (length)

from 269 larvae assigned to the high and low growth rate
index groups were measured (the nearest 0.1 mm using an
image analysis system (Optimas 6.0). The otolith size-at-
age data were described with an exponential function
(Fig. 2) and the residuals from that model were used as the
parameter describing otolith growth rate (OGR). As with
SL of fish, the residuals of otolith size-at-age from the
exponential fit describe deviation from expected values
for each individual. We view these deviations as a meas-

ure of the difference of growth of the otolith from the pop-
ulation growth trend. The absolute values of the residuals
(mm) were then converted to a percentage of the average
otolith size-at-age to allow for the pooling of residuals
across different ages. Additionally, a group of 30 otoliths
was measured three times to estimate the error related to
the precision of otolith size measurement (average CV =
0.69%; CV = SD / mean × 100).
Data analysis. In addition to describing the OGR-

SGR and OGR-Temperature data with simple linear
regressions, 3-way factorial ANOVA was used to evalu-
ate the temperature (T < 15° C and T > 15° C), somatic
growth (High-GR group and Low-GR group, residuals),
and year (92/93, 93/94, and 97/98) effect on otolith
growth. All the statistical comparisons were carried out
using Statistica®6.0. (StatSoft).

RESULTS
Otolith growth rate (OGR) (otolith length-on-age

residuals) was significantly affected by somatic growth
(SGR) (SL-on-age residuals), as indicated by the fitted to
OGR-SGR data regression line (r2 = 0.761, P < 0.005)
(Fig. 3). It is also noticeable that almost all the otoliths
from low-growth-rate group grew with a rate below the
mean and similarly, almost all otoliths from high-growth-
rate group grew with a rate above the mean value. This
method based on using residuals as fish and otolith growth
indices allowed for accounting for the observed in Figs. 1
and 2 fish and otolith growth dependence on fish age.

OGR was significantly affected not only by SGR (High-
GR group and Low-GR group), but also by temperature
(>15° C and <15° C)—similar way within each of the three
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Fig. 1. Relation between standard length (SL) and age (A) of larval Atlantic menhaden, Brevoortia tyrannus (collect-
ed from October through April 1992/93, 1993/94, and 1997/98), described with polynomial function (SL =
–8.0126 + 1.55A – 0.0271A2 + 0.0002A3 – 0.00000065263A4; n = 1865; r2 = 0.708)



analysed year (92/93, 93/94, and 97/98) (3-way ANOVA;
Table 1; Fig. 4). The somatic growth effect has been the
most pronounced. The temperature effect was independent
from the year effect (i.e., temperature affected OGR the
same way in each year). The SGR-effects interacted with
temperature and year, which indicates that otolith growth is
affected differently by temperature between the two somat-
ic growth groups—temperature affected significantly OGR
only in slow growing larvae (Fig. 4).

So to more precisely evaluate the difference in tem-
perature effect on otolith growth between GR groups, the
OGR was plotted against values of experienced by indi-
vidual fish temperatures, separately for the two growth-
rate groups (Fig. 5). The results confirmed that at high
somatic growth, temperature does not affect OGR (regres-
sion line, r2 = 0.021, P = 0.061), but at low somatic
growth, OGR increases with increasing temperature
(regression line, r2 = 0.320, P < 0.005).

DISCUSSION
There are multiple methods for measuring growth rate

and condition of early life stages of fish, including methods
that evaluate morphology (Theilacker 1986, McCormick
and Molony 1992), histology (Theilacker 1986), overall
and constituent lipid composition (Håkanson 1989), pro-
tein levels (Folkvord et al. 1996), RNA to DNA ratios
(Clemmesen 1988), fluctuating asymmetry of body parts
(Palmer 1994), and otolith microstructure (Campana and
Neilson 1985). The ability of otoliths for use in fluctuat-
ing asymmetry (FA) analysis to discriminate between nat-
ural variability of growth and condition of larval Atlantic
menhaden was evaluated (Fey and Hare 2008) using the

same fish used in the present work. The FA analysis was
ineffective in discriminating between growth rates
groups. The analyses conducted here addressed the otolith
microstructure analysis method. Assuming the existence
of significant relation between otolith growth and somat-
ic growth, it is possible to back-calculate fish size at
a given age. From these growth estimates, it is possible to
generate individual-fish growth trajectories from meas-
urements of increment widths. Existence of relation
between fish growth-otolith growth (as distinct from
a relation between fish size-otolith size relation) has been
found documented by many authors (e.g., Maillet and
Checkley 1990, Mugiya and Oka 1991, Paperno et al. 1997,
Tonkin et al. 2008), even if time lags may sometimes exist
(Molony and Choat 2006). Recently, Aguilera et al.
(2009) found that for European bass, Dicentrarchus
labrax (L.), larvae that the width of the outermost otolith
increments reflect the past feeding history and that the
recent otolith growth index can be used to distinguish well
fed from poorly fed larvae. Results of the above studies
are in agreement with the main conclusion of the current
research—otolith growth dependence on somatic
growth—and support the value of using otoliths in somat-
ic growth analysis

Despite the evidence supporting the existence of a sig-
nificant relation between fish growth and otolith growth,
species- or environment-related differences can be
expected. For example, Fey (2006) showed that the same
environmental conditions (temperature and zooplankton)
affect otolith growth differently in two co-occurring
pelagic species, European smelt, Osmerus eperlanus (L.),
and Atlantic herring, Clupea harengus L. For smelt,
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Fig. 2. Otolith size-at-age of larval Atlantic menhaden, Brevoortia tyrannus; Residuals from the fitted regression lines
(otolith length = –537.03 + 462.83 log (age); n = 268, r2 = 0.526) were used as otolith growth rate indices,
expressed as % deviation from the predicted value; Only fish distinguished earlier into fast-growth rate and slow-
growth rate groups are used in this analysis



otolith growth was significantly dependent on somatic
growth. For herring, otolith growth was dependent on
temperature with somatic growth having little effect.

Reports on other species and environmental factors
appear to identify temperature as the main factor influenc-
ing otolith growth. Temperature was reported to elicit
a strong effect in otoliths of Chinook salmon,
Oncorhynchus tshawytscha (Walbaum, 1792) (see
Bradford and Geen 1992), spotted sillago (=King George
whiting), Sillaginodes punctatus (Cuvier, 1829) (see
Barber and Jenkins 2001), Norwegian spring-spawning
herring (Folkvord et al. 2004), Atlantic cod, Gadus morhua
L. (see Neat et al. 2008), and (glass) Japanese eel, Anguilla
japonica Temminck et Schlegel, 1846 (see Fukuda et al.
2009). Although only among slow growing menhaden, a
temperature effect on otolith growth was found also in the
presently reported study. Clearly, the decoupling between
somatic and otolith growth is not an unusual phenomenon.
Regarding other literature information available for
Atlantic menhaden, temperature-influenced increment
spacing in the sagittal otoliths has been reported for juve-
niles reared at different temperatures (Fitzhugh et al. 1997),
but the effect seemed to be connected to somatic growth.

Although we found an independent temperature effect
on otolith growth to be of relatively low importance over-
all compared to the somatic growth effect, the effect of
temperature must be considered, for slow growing fish
and because the cause of the temperature effect is still
unclear. It was suggested by Mosegard et al. (1988) that
the acceleration of otolith size is increased in higher tem-
perature as a result of increased metabolic rate, especial-
ly if the temperature increases above optimum value for
growth. For example, increase of temperature above opti-
mum in shallow and warm waters of Vistula Lagoon was
a reason of decoupling observed for Baltic herring otolith
growth dependence on temperature (Fey 2005, 2006).
However, this hypothesis about overoptimal temperature
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Fig. 4. Experienced temperature (< 15º C, squares, dashed line; > 15º C, circles, solid line) and somatic growth rate
(High-GR and Low-GR) effect on the otolith growth rate (OGR) of late larval Atlantic menhaden, Brevoortia
tyrannus, presented separately for three spawning seasons: 1992/93, 1993/94, and 1997/98

df = degrees of freedom, MS = mean square, F = F-ratio,
P = significance level.

Fig. 3. The somatic growth rate (SGR) (SL-on-age residu-
als) effect on otolith growth rate (OGR) (otolith length-
on-age residuals) for late larval Atlantic menhaden,
Brevoortia tyrannus, described with linear function
(OGR = –3.302 + 1.337SGR; n = 268, r2 = 0.576)

Fixed effect df MS F P
SGR group 1 64 888 388.1 0.000
Temperature 1 6023 36.0 0.000
Year 2 1496 8.9 0.000
SGR group × Year 2 1530 9.2 0.000
SGR group × Temperature 1 1862 11.1 0.001
Year × Temperature 2 318 1.9 0.151
GRgroup×Temperature×Year 2 104 0.6 0.537
Error 260 167.2

Table 1
Analysis of variance (ANOVA) for the effect of somatic
growth rate (SGR) (High-GR and Low-GR groups), tem-
perature (<15°C and >15°C) and year (92/93, 93/04, and

97/98) on the otolith growth rate (OGR)



effect is perhaps invalid for menhaden in the presently
reported study. Our larvae probably did not experience
“untypical” temperatures (Stegmann et al. 1999), and the
individuals in the fast GR group, where no temperature
effect was observed, experienced the same temperatures
as those from slow GR group. Mosegard et al. (1988)
noted additionally that the phenomenon of metabolic rate
effect on otolith growth usually relates to slow growing
individuals, which agrees with our results. On the other
hand, Wright (1991) reported that increment width was
found to be positively correlated with the mean daily oxy-
gen consumption in both fast growing and slow growing
parr of Atlantic salmon, Salmo salar L. Also other authors
(Barber and Jenkins 2001, Fukuda et al. 2009) reported
from experimental studies that a positive temperature
effect on otolith growth occurred in all feeding conditions
analysed. The discrepancy in this issue may be to some
extend related to the fact that temperature optima may not
only vary for different species but also may be different
for otolith and somatic growth. It is possible that in the
present work temperature-induced metabolic rate increase
in the group of fast-growing menhaden was mitigated by
parallel somatic growth increase related to better nutri-
tional conditions. In case of slow-growing larvae (most
probably resulting from poor feeding conditions), the
temperature-induced metabolic rate increase was domi-
nant and therefore more visible.

Metabolic rate can therefore be the main factor direct-
ly controlling otolith growth, with temperature or feeding
conditions being just some of the factors responsible for
fish metabolism variation. For example, different temper-
ature and feeding conditions were found by Radtke and
Fey (1996) in their experimental work on Arctic charr,

Salvelinus alpinus L. responsible for parallel increase of
both somatic growth and otolith growth. It is however dif-
ficult to distinguish the feeding and temperature effect on
otolith growth from metabolic rate effect.

Concluding, otolith growth of larval and early juvenile
menhaden was found to be significantly dependent on
somatic growth, and thus the obtained results provide sup-
port for the assumptions allowing growth analysis by for
example growth trajectory back-calculation or marginal
increments analysis. However, some higher inaccuracy
may appear for slow growing fish, where independent
temperature effect on otolith growth was observed.
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