LENGTH-WEIGHT RELATIONS OF 34 FISH SPECIES CAUGHT BY SMALL-SCALE FISHERY IN KORINTHIAKOS GULF (CENTRAL GREECE)

Dimitrios K. MOUTOPOULOS^{*}, Alexios RAMFOS, Aikaterini MOUKA, and George KATSELIS

Technological Educational Institute of Mesolonghi, Department of Aquaculture and

Fisheries Management, Laboratory of Hydrobiology and Fisheries Management, 30200 Mesolonghi, Greece

Moutopoulos D.K., Ramfos A., Mouka A., Katselis G. 2013. Length-weight relations of 34 fish species caught by small-scale fishery in Korinthiakos Gulf (Central Greece). Acta Ichthyol. Piscat. 43 (1): 57-64.

Abstract. Length–weight (L-W) relations are presented for 34 fish species covering a full annual fishing period (231 fishing days) of professional small-scale fishery in Korinthiakos Gulf during 2008–2009. These were the typical fish species caught by Greek small-scale fishery. Mean annual values of b ranged from 2.751 to 3.704. The L-W relations were positively allometric for 12 species, negatively allometric for seven species and isometric for 15 species. Twenty-two out of 66 species-season combinations showed that the intercept a and/or slope b values differed significantly among seasons. For Greek waters no information regarding the L-W relations existed for three of the 34 recorded species (i.e., Dentex macrophthalmus, Trachinotus ovatus, and Scyliorhinus canicula).

Keywords: length-weight relations, season, small-scale fishery, Korinthiakos Gulf, Mediterranean Sea

teristic and its relation with body weight has been extensively documented in fisheries research (Froese et al. 2011). The Length–weight (L-W) relation of a species depends on many factors (i.e. sex, size range, habitat, food availability, and fishing pressure), but may also vary seasonally (Froese 2006, Karachle and Stergiou 2008, Liousia et al. 2012). However, studies focusing on seasonal L-W relations are rather limited compared with those on annual estimates, because most of the estimates are based on samplings conducted during short-term periods in an annual basis.

In Greek fisheries, *L*–*W* relations are mostly derived from sampling conducted in open sea (using trawls and purse seines; for reviews see: Stergiou and Moutopoulos 2001, Karachle and Stergiou 2008) than in coastal waters (smallscale fishery; Moutopoulos and Stergiou 2002), despite of the multi-gear nature of the fishery. Small-scale fishery is of great importance to the Greek fishery contributing 57.3% to the total Greek fisheries landings (Moutopoulos and Stergiou 2012). It involves approximately 30 000 fishers characterized by low income, elementary education and living in small and isolated islands (Tzanatos et al. 2005). Likewise, in the study area (Korinthiakos Gulf) the small-scale fishery component is highly contributing to providing approximately 74% of the total landings (Moutopoulos and Stergiou 2012).

In the presently reported study, we calculated annual and seasonal estimates of L-W relations for the most abun- mon dentex, Dentex dentex (Linnaeus, 1758); flathead dant fish species caught by a professional small-scale ves-

Body size is the most easily measured universal charac- sel in Korinthiakos Gulf during a full annual fishing period: European hake, Merluccius merluccius (Linnaeus, 1758); white seabream, Diplodus sargus (Linnaeus, 1758); common pandora, Pagellus erythrinus (Linnaeus, 1758); bogue, Boops boops (Linnaeus, 1758); surmullet, Mullus surmuletus Linnaeus, 1758; Mediterranean horse mackerel, Trachurus mediterraneus (Steindachner, 1868); large-eye dentex, Dentex macrophthalmus (Bloch, 1791); annular seabream, Diplodus annularis (Linnaeus, 1758); spotted flounder, Citharus linguatula (Linnaeus, 1758); red mullet, Mullus barbatus Linnaeus, 1758; common two-banded seabream, Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817); blotched picarel, Spicara maena (Linnaeus, 1758); stargazer, Uranoscopus scaber Linnaeus, 1758; comber, Serranus cabrilla (Linnaeus, 1758); blue whiting, Micromesistius (Risso, 1827); European pilchard, Sardina poutassou pilchardus (Walbaum, 1792); red porgy, Pagrus 1758); Spicara pagrus (Linnaeus, picare, smaris (Linnaeus, 1758); black scorpionfish, Scorpaena porcus Linnaeus, 1758; golden grey mullet, Liza aurata (Risso, 1810); round sardinella, Sardinella aurita Valenciennes, 1847; European barracuda, Sphyraena sphyraena (Linnaeus, 1758); greater weever, Trachinus draco Linnaeus, 1758; saddled seabream, Oblada melanura (Linnaeus, 1758); salema, Sarpa salpa (Linnaeus, 1758); red scorpionfish, Scorpaena scrofa Linnaeus, 1758; comgrey mullet, Mugil cephalus Linnaeus, 1758; black

* Correspondence: Dr Dimitrios K. Moutopoulos, Technological Educational Institute of Mesolonghi, Department of Aquaculture and Fisheries Management, Laboratory of Hydrobiology and Fisheries Management, Nea Ktiria, 30200, Mesolonghi, Greece, tel: +30 26310 58202, fax: +30 26310 58202, e-mail: dmoutopo@teimes.gr.

seabream, *Spondyliosoma cantharus* (Linnaeus, 1758); gilthead seabream, *Sparus aurata* Linnaeus, 1758; John dory, *Zeus faber* Linnaeus, 1758; pompano, *Trachinotus ovatus* (Linnaeus, 1758); Small-spotted catshark, *Scyliorhinus canicula* (Linnaeus, 1758); sharpsnout seabream, *Diplodus puntazzo* (Walbaum, 1792). For the majority of species (29 out of 34) the estimated band the 95% confidence limit (CL_{95%}) values felt withinthe range reported in FishBase (Froese and Pauly 2012)

The samples were obtained from 231 daily fishing trials conducted with a professional small vessel (length 5.8 m; 33.5 kW engine) in the Korinthiakos Gulf (38°16′50″N, 22°11′40″E) during June 2008–August 2009. Specimens were caught using gill nets (mesh sizes of 22, 24, and 32 mm nominal bar length; 500 m) and trammel nets (mesh size of 22 mm nominal bar length; 500–600 m) at depths ranging from 50 to 300 m. Fishing trials were conducted simultaneously on the same fishing grounds using the aforementioned fishing gear. The fishing grounds were selected by the fisher in traditional areas in order to ensure that fishing was as similar as possible to the professional fishing activities employed in Korinthiakos Gulf.

Fish were measured in the field for total length (TL) to the nearest cm, and weighed (W, wet weight) to the nearest g. Length-weight (L-W) relations were estimated using the equation

$W = a T L^b$

where: a and b are the equation parameters calculated by the least squares method using the logarithmic form of the equation:

 $\log(W) = \log(a) + b \cdot \log(\mathrm{TL})$

The *b*-value of each species was tested by Student's *t*-test to verify if it was significantly different from isometric growth (b = 3, P < 0.05) (Froese et al. 2011).

In addition, for the most abundant species L-W relations were separately estimated per season (i.e., autumn 2008, winter 2008–2009, spring 2009, and summer 2008–2009). For each species, the intercepts and the slopes of the L-Wregressions were compared for between-season differences using analysis of covariance (ANCOVA) (Zar 1999).

L-W relations are estimated for the 34 most abundant species (9598 specimens) during June 2008–August 2009 (Table 1). The studied species represent the most typical fish species caught by small-scale fishery in Greece (Moutopoulos and Stergiou 2012). The sample size ranged from 10, for *Diplodus puntazzo*, to 1408, for *Merluccius merluccius*. The low number of specimens for some species (< 30 individuals) could be attributed to the low selective properties of the gear used in the study area.

All relations were highly significant (P < 0.001), with R^2 values being greater than 0.908 indicating a high degree of positive relation between TL and W. The mean (\pm standard deviation) value of the exponent b was 3.038 \pm 0.17 and for all species the *b* values laid within the expected range of 2.5–3.5 estimated by Froese (2006) (Table 1): from 2.751, for *Sphyraena sphyraena*, to 3.396, for *Micromesistius poutassou*.

For 12 out of 34 species the *b* values of the *L*–*W* relations were higher than 3 (Student's *t*-test; P < 0.05) exhibiting a positive allometric growth, for seven species the *b* values were lower than 3 (*t*-test; P < 0.05) exhibit-

ing a negative allometric growth and for the remaining species the *b* values did not differ significantly (*t*-test; P > 0.05) from 3 showing an isometric growth (Table 1). For the majority of species (29 out of 34) the estimated b and the 95% confidence limit (CL_{95%}) values felt within the range reported in FishBase (Froese and Pauly 2012) (Table 1), whereas for four species were greater than the maximum values and for one species (*Dentex macroph-thalmus*) their values were lower than the minimum values reported in FishBase. Such differences in b values could be attributed to one or more of the following factors (Moutopoulos and Stergiou 2002, Froese 2006):

- · differences in the number of specimens examined,
- area/season effects, and

• differences in the observed length ranges and the type of length used.

For Greek seas no information regarding the L-W relations existed for *D. macrophthalmus*, *Trachinus ovatus*, and *Scyliorhinus canicula*.

Seasonal *L*–*W* relations were estimated separately for the 13 most abundant species (those with n > 30 per season) (Table 2). Exceptions were the specimens of *Trachurus mediterraneus* in autumn (n = 26) and *Serranus cabrilla* in spring (n = 16). All relations were highly significant (P < 0.001), with most R^2 values being greater than 0.834. The value of the exponent *b* ranged from 2.642, for *Dentex macrophthalmus* in autumn, to 3.518, for *Mullus surmuletus* in summer (Table 2).

Comparisons between all pairs of species-season combinations (Table 3) showed that for 44 out of 66 speciesseason combinations intercept *a* and/or slope *b* values did not differ significantly (ANCOVA: P > 0.05) with season. In particular, for 14 out of the 44 non-significant combinations both the intercept *a* and the slope *b* did not differ with season, whereas for 11 and 19 combinations the intercept *a* or the slope *b*, respectively, showed non-significant differences with season. For the remaining 22 species-season combinations, L-W estimates showed significant (ANCOVA: P < 0.05) differences with season, from which 14 are attributed to the effect of summer (Table 3).

Seasonal differences in L-W relations can be attributed to biological (e.g., reproduction, sex, food availability) and/or abiotic (e.g., water temperature) factors (Wootton 1998, Moutopoulos et al. 2011). The effects of abiotic factors and those of sex and food availability are not examined in the present study. Yet, the spawning and gonad activity could cause seasonal variations in the values of parameter b of the L-W relation for the most abundant species (Table 2).

In particular, in six out 13 species (*Pagellus erythrinus*, *Boops boops*, *Mullus surmuletus*, *Dentex macrophthalmus*, *Citharus linguatula*, and *Serranus cabrilla*) b values were significantly higher during spawning period, as given by Tsikliras et al. (2010) than the other seasons/months (Tables 2, 3). For the remaining seven species, for two species (*Trachurus mediterraneus* and *Diplodus vulgaris*) b values did not significantly differed among seasons, for two species (*Merluccius merluccius*)

-	
Table	

	;	Ц	raction of	`season [⁰	[%]	Γ	TL [cm]			L^{-}	-W relatio	u		Range of b	ζ
obecies	и	Au	Wi	Sp	Su	Median	Min	Max	а	${\rm SE}_a$	p	${\rm SE}_b$	R^2	$FishBase^{1}$	5
Merluccius merluccius	1408	2.8	15.4	23.4	58.4	28.8	14.8	60.6	0.0043	0.022	3.136	0.015	0.984	2.353-3.408	+
Diplodus sargus	1055	2.9	0.5	0.1	96.5	17.2	11.2	25.7	0.0140	0.028	3.056	0.022	0.973	2.500 - 3.314	+
Pagellus erythrinus	773	23.5	17.5	37.3	21.7	18.0	10.8	38.0	0.0177	0.029	2.863	0.023	0.976	2.428–3.116	I
Boops boops	724	9.1	50.1	13.4	27.3	21.1	11.7	34.0	0.0070	0.041	3.098	0.031	0.965	2.812-3.390	+
Mullus surmuletus	678	26.8	31.4	30.1	11.7	20.4	11.9	33.6	0.0037	0.035	3.381	0.027	0.979	2.669-3.512	+
Trachurus mediterraneus	671	3.9	25.2	20.0	51.0	28.0	15.4	51.0	0.0086	0.027	2.980	0.019	0.987	2.760-3.374	
Dentex macrophthalmus*	646	15.5	12.8	26.3	45.4	17.2	12.8	28.4	0.0185	0.048	2.850	0.039	0.946	2.980 - 3.120	I
Diplodus annularis	409	37.2	9.5	12.5	40.8	12.9	9.5	20.1	0.0114	0.032	3.114	0.028	0.984	2.677-3.506	+
Citharus linguatula	377	21.0	14.9	50.9	13.3	16.6	11.5	39.7	0.0070	0.054	3.009	0.044	0.962	2.293-3.725	II
Mullus barbatus	373	1.3	4.8	71.0	22.8	19.0	13.4	24.0	0.0058	0.050	3.219	0.039	0.974	2.508 - 3.380	+
Diplodus vulgaris	345	11.0	1.2	0.3	87.5	17.7	11.0	23.5	0.0123	0.039	3.070	0.031	0.983	2.431 - 3.590	+
Spicara flexuosa	339	0.0	13.9	77.3	8.8	16.9	13.2	19.5	0.0132	0.048	3.040	0.039	0.974	2.627–3.696	II
Uranoscopus scaber	296	17.6	15.5	23.3	43.6	18.7	13.6	30.4	0.0120	0.043	3.101	0.034	0.983	2.829–3.228	+
Serranus cabrilla	215	14.0	28.4	50.2	7.4	18.0	12.5	26.2	0.0159	0.082	2.874	0.065	0.949	2.410-3.220	I
Micromesistius poutassou	155	0.0	9.0	1.9	97.4	26.2	16.9	33.1	0.0020	0.107	3.396	0.076	0.964	2.900-3.212	+
Sardina pilchardus	152	0.0	87.5	5.9	9.9	13.0	10.2	16.1	0.0036	0.094	3.257	0.085	0.953	2.754–3.741	+
Pagrus pagrus	129	10.9	4.7	30.2	54.3	20.5	13.7	42.2	0.0182	0.032	2.946	0.024	0.996	2.866–3.343	Ι
Spicara smaris	123	0.0	1.6	95.9	2.4	14.2	10.9	16.8	0.0176	0.135	2.781	0.117	0.908	2.594-3.572	Ι
Scorpaena porcus	103	16.5	12.6	6.8	64.1	15.5	10.5	31.8	0.0192	0.091	2.965	0.076	0.969	2.590-3.343	II
Liza aurata	80	50.0	26.3	3.8	20.0	30.0	23.9	42.5	0.0032	0.117	3.257	0.079	0.978	2.490 - 3.230	+

$\rho p c c c c c c c c c c c c c c c c c c $	C,	:	Fre	action of s	eason [%		H	L [cm]			L^{-}	W relation	L		Range of b
Sardinella aurita7320.515.143.820.522.111.636.00.0067Sphyraena sphyaena7332.931.51.434.239.928.470.00.0090Trachinus draco679.014.925.450.721.117.032.90.01146Oblada melamura5962.716.90.020.317.614.629.50.0169Sarpa salpa5311.35.70.083.024.015.830.70.0091Scorpaena scrofa5324.59.441.524.515.311.736.80.0169Scorpaena scrofa5324.59.441.524.515.311.736.80.0169Magil cephalus3369.727.33.00.023.520.344.00.0047Spondyliosoma cantharus293.43.40.09.316.923.623.00.0066Sparva aurata1877.822.20.00.039.723.023.00.0066Sparva surata1877.825.00.00.023.623.749.50.0183Trachinotus ovatus*1225.00.00.00.023.743.20.00.0Star surata1877.825.00.00.023.623.749.50.0Star surata130.07.730.861.527.816.7 <th>S</th> <th>u</th> <th>Au</th> <th>Wi</th> <th>Sp</th> <th>Su</th> <th>Median</th> <th>Min</th> <th>Max</th> <th>а</th> <th>${\rm SE}_a$</th> <th>p</th> <th>${ m SE}_b$</th> <th>R^2</th> <th>FishBase¹</th>	S	u	Au	Wi	Sp	Su	Median	Min	Max	а	${\rm SE}_a$	p	${ m SE}_b$	R^2	FishBase ¹
Splyraena splyraena7332.931.51.434.239.928.470.00.0090Trachinus draco679.014.9 25.4 50.7 21.1 17.0 32.9 0.0114 Oblada melanura59 62.7 16.9 0.0 20.3 17.6 14.6 29.5 0.0146 Sarpa salpa53 11.3 5.7 0.0 83.0 24.0 15.8 30.7 0.0091 Sarpa salpa53 24.5 9.4 41.5 24.5 15.3 11.7 36.8 0.0169 Scorpaena scrofa53 24.5 9.4 41.5 24.5 15.3 11.7 36.8 0.0169 Dentex dentex43 32.6 4.7 2.3 60.5 28.1 17.1 48.0 0.0130 Mugil cephalus33 69.7 27.3 3.0 0.0 23.5 20.3 44.0 0.0647 Spondyliosoma cantharus29 3.4 3.4 0.0 93.1 16.9 23.2 0.0066 Sparva aurata18 77.8 22.2 0.0 39.7 23.0 23.0 0.0066 Zeus faber13 0.0 7.7 30.8 61.5 27.8 16.7 49.5 0.0183 Trachinotus ovatus*12 25.0 0.0 0.0 39.7 23.0 0.0066 Trachinotus ovatus*12 25.0 0.0 0.0 27.6 22.7 0.0086 <	inella aurita	73	20.5	15.1	43.8	20.5	22.1	11.6	36.0	0.0067	0.039	3.022	0.030	0.997	2.804-3.439
Trachinus draco 67 9.0 14.9 25.4 50.7 21.1 17.0 32.9 0.0114 Oblada melamura 59 62.7 16.9 0.0 20.3 17.6 14.6 29.5 0.0146 Sarpa salpa 53 11.3 5.7 0.0 83.0 24.0 15.8 30.7 0.0091 Sarpa salpa 53 11.3 5.7 0.0 83.0 24.0 15.8 30.7 0.0091 Scorpaena scrofa 53 24.5 9.4 41.5 24.5 15.3 11.7 36.8 0.0169 Scorpaena scrofa 53 24.5 9.4 41.5 24.5 15.3 11.7 36.8 0.0169 Mugil cephalus 33 69.7 27.3 3.0 0.0 23.5 20.3 44.0 0.0047 Spondyliosoma cantharus 29 3.4 3.4 0.0 93.1 16.9 13.9 22.2 0.0066 Sparus aurata 18 77.8 22.2 0.0 93.7 23.0 23.0 0.0066 Sparus aurata 18 77.8 22.2 0.0 39.7 23.0 23.0 0.0066 Zeus faber 13 0.0 7.7 30.8 61.5 27.7 49.5 0.0183 Trachinotus ovatus* 12 25.0 0.0 0.0 75.0 27.6 22.7 0.0066	raena sphyraena	73	32.9	31.5	1.4	34.2	39.9	28.4	70.0	0.0090	0.129	2.751	0.080	0.971	2.086 - 3.175
Oblada melanura 59 62.7 16.9 0.0 20.3 17.6 14.6 29.5 0.0146 Sarpa salpa 53 11.3 5.7 0.0 83.0 24.0 15.8 30.7 0.0091 Scorpaena scrofa 53 24.5 9.4 41.5 24.5 11.7 36.8 0.0169 Scorpaena scrofa 53 24.5 9.4 41.5 24.5 15.3 11.7 36.8 0.0169 Dentex dentex 43 32.6 4.7 2.3 60.5 28.1 17.1 48.0 0.0130 Mugil cephalus 33 69.7 27.3 3.0 0.0 23.5 20.3 44.0 0.0047 Spondyliosoma cantharus 29 3.4 0.0 93.1 16.9 13.9 22.2 0.00663 Sparus aurata 18 77.8 22.2 0.0 0.0 23.0 23.0 0.0066 Zeus faber 13 0.0 7.7 30.8	hinus draco	67	9.0	14.9	25.4	50.7	21.1	17.0	32.9	0.0114	0.116	2.806	0.087	0.970	2.578-3.873
Sarpa salpa5311.35.70.083.024.015.830.70.0091Scorpaena scrofa5324.59.441.524.515.311.736.80.0169Dentex dentex4332.64.72.360.528.117.148.00.0130Mugil cephalus3369.727.33.00.023.520.344.00.0047Spondyliosoma cantharus293.43.40.093.116.913.922.20.0066Sparva aurata1877.822.20.00.039.723.053.00.0066Zeus faber130.07.730.861.527.816.749.50.0183Trachinotus ovatus*1225.00.00.075.027.647.20.0232	da melanura	59	62.7	16.9	0.0	20.3	17.6	14.6	29.5	0.0146	0.058	2.932	0.046	0.993	2.831 - 3.567
Scorpaena scrofa5324.59.441.524.515.311.736.80.0169Dentex demex4332.64.72.360.528.117.148.00.0130Mugil cephalus3369.727.33.00.023.520.344.00.0047Spondyliosoma cantharus293.43.40.093.116.913.922.20.0063Sparus aurata1877.822.20.00.039.723.053.00.0066Zeus faber130.07.730.861.527.816.749.50.0183Trachinotus ovatus*1225.00.00.075.027.620.343.20.0232	a salpa	53	11.3	5.7	0.0	83.0	24.0	15.8	30.7	0.0091	0.115	3.095	0.084	0.982	2.778–3.265
Dentex dentex 43 32.6 4.7 2.3 60.5 28.1 17.1 48.0 0.0130 Mugil cephalus 33 69.7 27.3 3.0 0.0 23.5 20.3 44.0 0.0047 Spondyliosoma cantharus 29 3.4 3.4 0.0 93.1 16.9 13.9 22.2 0.0063 Sparus aurata 18 77.8 22.2 0.0 0.0 39.7 23.0 53.0 0.0066 Zeus faber 13 0.0 7.7 30.8 61.5 27.8 16.7 49.5 0.0183 Trachinotus ovatus* 12 25.0 0.0 0.0 75.0 27.6 0.0232	vaena scrofa	53	24.5	9.4	41.5	24.5	15.3	11.7	36.8	0.0169	0.101	3.002	0.083	0.981	2.730–3.298
Mugil cephalus 33 69.7 27.3 3.0 0.0 23.5 20.3 44.0 0.0047 Spondyliosoma cantharus 29 3.4 3.4 0.0 93.1 16.9 13.9 22.2 0.0063 Spondyliosoma cantharus 29 3.4 3.4 0.0 93.1 16.9 13.9 22.2 0.0063 Sparus aurata 18 77.8 22.2 0.0 0.0 39.7 23.0 53.0 0.0066 Zeus faber 13 0.0 7.7 30.8 61.5 27.8 16.7 49.5 0.0183 Trachinotus ovatus* 12 25.0 0.0 0.0 75.0 27.6 22.7 43.2 0.0232	'ex dentex	43	32.6	4.7	2.3	60.5	28.1	17.1	48.0	0.0130	0.077	2.987	0.053	0.994	2.966–3.530
Spondyliosoma cantharus 29 3.4 0.0 93.1 16.9 13.9 22.2 0.0063 Sparus aurata 18 77.8 22.2 0.0 0.0 39.7 23.0 53.0 0.0066 Zeus faber 13 0.0 7.7 30.8 61.5 27.8 16.7 49.5 0.0183 Trachinotus ovatus* 12 25.0 0.0 0.0 75.0 27.6 22.7 43.2 0.0232	il cephalus	33	69.7	27.3	3.0	0.0	23.5	20.3	44.0	0.0047	0.078	3.165	0.056	0.995	2.779–3.125
Sparus aurata 18 77.8 22.2 0.0 0.0 39.7 23.0 53.0 0.0066 Zeus faber 13 0.0 7.7 30.8 61.5 27.8 16.7 49.5 0.0183 Trachinotus ovatus* 12 25.0 0.0 0.0 75.0 27.6 23.7 43.2 0.0232	dyliosoma cantharus	29	3.4	3.4	0.0	93.1	16.9	13.9	22.2	0.0063	0.236	3.304	0.192	0.957	2.849–3.150
Zeus faber 13 0.0 7.7 30.8 61.5 27.8 16.7 49.5 0.0183 Trachinotus ovatus* 12 25.0 0.0 0.0 75.0 27.6 22.7 43.2 0.0232	us aurata	18	77.8	22.2	0.0	0.0	39.7	23.0	53.0	0.0066	0.261	3.190	0.166	0.979	2.736-3.337
Trachinotus ovatus* 12 25.0 0.0 0.0 75.0 27.6 22.7 43.2 0.0232	faber	13	0.0	7.7	30.8	61.5	27.8	16.7	49.5	0.0183	0.133	2.908	0.092	0.995	2.500-2.950
	hinotus ovatus*	12	25.0	0.0	0.0	75.0	27.6	22.7	43.2	0.0232	0.554	2.754	0.377	0.918	2.730-2.730
<i>Scyliorhinus canicula</i> * 11 0.0 81.8 0.0 18.2 38.7 34.2 43.8 0.0019	orhinus canicula*	11	0.0	81.8	0.0	18.2	38.7	34.2	43.8	0.0019	0.654	3.139	0.412	0.931	2.779–3.615
Diplodus puntazzo 10 0.0 0.0 100.0 18.4 17.7 20.7 0.0243	odus puntazzo	10	0.0	0.0	0.0	100.0	18.4	17.7	20.7	0.0243	0.412	2.831	0.324	0.951	2.662-3.273

respectively), R^2 = coefficient of determination; G = type of growth: allometric (-), positive allometric (+), and (=) isometric; ¹Froese and Pauly (2012); * first record from Greek waters. $[SE_a \text{ and } SE_b,$

|| || ||

II

G

Table 1 cont.

 || || ||

C	C.	:		TL [cm]				L-W relation			δ
opecies	Season	И	Median	Min	Max	a	${ m SE}_a$	<i>b</i>	SE_b	R^2	^
	Autumn	40	36.0	23.0	47.3	0.0086	0.10	2.932	0.07	066.0	*
	Winter	217	27.1	15.1	60.6	0.0047	0.05	3.104	0.04	0.985	*
Merinccius merinccius	Spring	329	26.7	14.8	54.2	0.0036	0.04	3.183	0.03	0.988	*
	Summer	822	29.6	15.4	55.5	0.0056	0.03	3.068	0.02	0.980	*
	Autumn	182	17.3	12.8	34.7	0.0217	0.05	2.798	0.04	0.982	
	Winter	135	18.3	13.8	32.5	0.0198	0.07	2.814	0.06	0.973	
ragenus erymrinus	Spring	288	18.9	12.5	38.0	0.0134	0.06	2.951	0.04	0.970	*
	Summer	168	17.1	10.8	36.3	0.0147	0.05	2.944	0.04	0.986	*
	Autumn	99	21.5	15.0	26.0	0.0082	0.09	3.047	0.07	0.985	
	Winter	363	21.2	11.7	28.6	0.0060	0.07	3.137	0.05	0.958	*
Boops voops	Spring	76	20.4	15.9	33.7	0.0040	0.10	3.281	0.08	0.975	*
	Summer	198	20.7	12.4	34.0	0.0077	0.06	3.093	0.04	0.982	
	Autumn	182	19.5	13.7	26.5	0.0078	0.07	3.121	0.06	0.971	
	Winter	213	20.2	11.9	33.6	0.0030	0.07	3.446	0.05	0.977	
Multus Surmuletus	Spring	204	21.8	17.1	27.9	0.0048	0.07	3.298	0.05	0.976	
	Summer	62	19.7	13.4	26.7	0.0025	0.09	3.518	0.07	0.986	*
	Autumn	26	26.6	21.9	44.0	0.0155	0.19	2.805	0.13	0.973	
	Winter	169	28.8	18.7	42.6	0.0023	0.09	3.385	0.06	0.974	
Irachurus meanerraneus	Spring	134	29.1	16.4	44.7	0.0070	0.06	3.033	0.04	0.990	*
	Summer	342	25.7	15.4	51.0	0.0104	0.03	2.921	0.02	0.990	*
	Autumn	100	17.4	12.8	25.0	0.0341	0.13	2.642	0.10	0.934	
Doutor magner lethalming	Winter	83	17.5	14.0	21.8	0.0121	0.19	2.983	0.16	0.906	
Dentes macrophinamas	Spring	170	17.5	13.5	26.1	0.0153	0.07	2.905	0.06	0.969	
	Summer	293	16.7	13.5	28.4	0.0149	0.07	2.935	0.05	0.955	*

				TL				I_W relation			
Species	Season	и	Median	Min	Max	a	SE	<i>b</i>	${\rm SE}_{ m k}$	R^2	S
	Autumn	152	13.3	11.1	19.9	0.0064	0.06	3.334	0.05	0.983	
Dinlodus annularis	Winter	39	13.2	11.2	20.1	0.0094	0.09	3.182	0.08	0.990	
	Spring	51	12.8	11.1	15.5	0.0122	0.12	3.094	0.10	0.973	*
	Summer	167	12.5	9.5	19.4	0.0154	0.05	2.995	0.04	0.984	*
	Autumn	79	17.2	13.5	39.7	0.0043	0.09	3.166	0.07	0.981	*
Citharus linguatula	Winter	56	16.8	11.5	34.6	0.0102	0.12	2.895	0.09	0.973	
)	Spring	192	16.5	11.6	25.0	0.0065	0.07	3.029	0.06	0.965	
	Summer	50	16.2	13.2	21.4	0.0080	0.34	2.975	0.28	0.834	
	Winter	18	19.9	15.9	21.9	0.0043	0.06	3.324	0.04	0.977	
Mullus barbatus	Spring	265	19.1	14.2	24.0	0.0051	0.25	3.247	0.19	0.973	*
	Summer	85	18.0	13.4	23.8	0.0120	0.10	2.957	0.08	0.969	*
	Winter	38	15.0	11.5	18.1	0.0121	0.07	3.083	0.06	0.978	*
Diploaus vuigaris	Summer	302	18.0	11.0	21.6	0.0133	0.05	3.042	0.04	0.979	
	Autumn	52	19.8	13.6	25.5	0.0112	0.09	3.121	0.07	0.988	*
Uranoscopus scaber	Winter	46	18.0	14.7	28.0	0.0130	0.13	3.076	0.10	0.976	*
7	Spring	69	18.5	13.8	28.9	0.0113	0.15	3.129	0.12	0.954	*
	Summer	129	18.8	13.7	27.8	0.0108	0.07	3.136	0.06	0.980	*
	Autumn	30	18.4	14.0	23.0	0.0215	0.25	2.798	0.20	0.938	
Serranus cabrilla	Winter	61	18.1	15.0	23.6	0.0202	0.15	2.796	0.12	0.953	
	Spring	108	18.0	14.2	26.2	0.0136	0.11	2.917	0.09	0.952	*
	Summer	16	17.7	12.5	23.3	0.0203	0.15	2.793	0.12	0.986	*
Decure second	Spring	39	20.4	14.2	38.9	0.0168	0.06	2.972	0.04	0.996	
rugrus pugrus	Summer	62	20.7	14.7	32.2	0.0155	0.09	3.000	0.07	0.985	
n = sample size; TL = tc period of Mediterranean	otal length; a and $b =$ fish species accordin	parameters o ng to Tsikliras	f the $L-W$ relati s et al. (2010); *	ion and their st significantly	tandard errors differences of	(SE $_a$ and SE $_b$, r b parameters wi	espectively), <i>I</i> ith season (AN	R^2 = coefficient VCOVA: $P < 0.0$	of determinat 05).	ion; S = spaw	ning

Table 2 cont.

Table 3

		Aut	umn	Wi	nter	Spi	ring
Species	Season	P of a	P of b	P of a	P of b	P of a	P of b
	Winter	*	ns				
Merluccius merluccius	Spring	ns	ns	ns	*		
	Summer	*	ns	*	*	*	*
	Winter	*	*				
Pagellus erythrinus	Spring	*	ns	ns	*		
	Summer	*	*	*	*	*	ns
	Winter	*	ns				
Boops boops	Spring	ns	*	*	*		
	Summer	*	*	*	*	*	*
	Winter	*	*				
Mullus surmuletus	Spring	*	*	*	ns		
	Summer	*	ns	ns	*	*	*
	Winter	ns	ns				
Trachurus mediterraneus	Spring	ns	ns	ns	ns		
	Summer	*	ns	*	ns	*	ns
	Winter	*	ns				
Dentex macrophthalmus	Spring	*	ns	ns	ns		
	Summer	*	*	*	*	*	ns
	Winter	ns	ns				
Diplodus annularis	Spring	*	*	ns	*		
	Summer	*	*	ns	*	ns	ns
	Winter	ns	*				
Citharus linguatula	Spring	ns	*	*	*		
	Summer	*	*	ns	*	*	ns
	Spring			*	*		
Mullus barbatus	Summer			*	ns	*	ns
Diplodus vulgaris	Summer			*	ns		
	Winter	ns	ns				
Uranoscopus scaber	Spring	ns	ns	ns	ns		
	Summer	ns	*	ns	ns	ns	ns
	Winter	*	ns				
Serranus cabrilla	Spring	*	ns	ns	ns		
	Summer	ns	ns	ns	*	*	*
Pagrus pagrus	Summer					*	*

Results of the analysis of covariance (ANCOVA, P < 0.05) for pairs of L-W relations for the most abundant fish species caught in Korinthiakos Gulf, 2008-2009 for different species-season combinations

a and b = parameters of the L–W relation; ns = non significant difference (P > 0.05), * significant difference (P < 0.05).

and Uranoscopus scaber) their spawning period have ACKNOWLEDGEMENTS been reported all year round, for one species (Pagrus pagrus) there is not any reference on its spawning period and for two species (Diplodus annularis and Mullus barbatus) b values were significantly higher during nonspawning periods. All the above relations are of great importance, since they determine fish growth patterns, which in turn are essential for developing of ecosystem- Froese R. 2006. Cube law, condition factor and weight-length based models for fisheries.

The authors would like to thank Mr. and Mrs Moukas for their valuable help during the sampling trials. The authors wish to thank two anonymous reviewers for their useful and constructive comments and suggestions.

REFERENCES

relationships: history, meta-analysis and recommendations.

10.1111/j.1439-0426.2006.00805.x

- Froese R., Pauly D. (eds.). 2012. FishBase. [version 8/2012] http://www.fishbase.org
- Froese R., Tsikliras A.C., Stergiou K.I. 2011. Editorial note on weight-length relations of fishes. Acta Ichthyologica et Piscatoria 41 (4): 261-263. DOI: 10.3750/AIP2011.41.4.01
- Karachle P.K., Stergiou K.I. 2008. Length-length and length-weigh relationships of several fish species from the North Aegean Sea (Greece). Journal of Biological Research 10: 149-157.
- Liousia V., Batziakas S., Panagiotou N., Daouti I., Koutrakis E., Leonardos I.D. 2012. Length-weight relations of 22 fish species from the littoral zone of the eastern Ionian Sea, Greece. Acta Ichthyologica et Piscatoria 42 (1): 69–72. DOI: 10.3750/AIP2011.42.1.09
- Moutopoulos D.K., Koukou K., Vavarouta V., Ramfos A., Katselis G. 2011. Investigation of length-weight relationships for 10 commercial fish species as a possible trophic state index of coastal lagoons. Acta Adriatica 52 (2): 261-268.
- Moutopoulos D.K., Stergiou K.I. 2002. Length-weight and length-length relationships of fish species from the Aegean Sea (Greece). Journal of Applied Ichthyology 18 (3): 200-203. DOI: 10.1046/j.1439-0426.2002.00281.x

- Journal of Applied Ichthyology 22 (4): 241-253. DOI: Moutopoulos D.K., Stergiou K.I. 2012. Spatial disentangling of Greek commercial fisheries landings by gear between 1928–2007. Journal of Biological Research 18: 265–279.
 - Stergiou K.I., Moutopoulos D.K. 2001. A review of length-weight relationships of fishes from Greek marine waters. Naga, The ICLARM Quarterly 24 (1-2): 23-39.
 - Tsikliras A.C., Antonopoulou E., Stergiou K.I. 2010. Spawning period of Mediterranean marine fishes. Reviews in Fish Biology and Fisheries 20 (4): 499-438. DOI: 10.1007/s11160-010-9158-6
 - Tzanatos E., Dimitriou E., Katselis G., Georgiadis M., Koutsikopoulos C. 2005. Composition, temporal dynamics and regional characteristics of small-scale fisheries in Greece. Fisheries Research 73 (1-2): 147-158. DOI: 10.1016/j.fishres.2004.12.006
 - Wootton R.J. 1998. Ecology of teleost fishes. 2nd edn. Fish and fisheries Series. Vol. 24. Kluwer, London, UK.
 - Zar J.H. 1999. Biostatistical Analysis. 4th edn. Prentice Hall, Upper Saddle River, NJ, USA.

Received: 13 August 2012 Accepted: 23 January 2013 Published electronically: 31 March 2013