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Background. Species identification from recovered fish scales, e.g., from the sediment or stomach contents, 
has proven to be problematic for clupeid species. To ensure reliable species discrimination within Clupeidae, 
we attempted to reveal inter- and intra-specific, as well as, the intra-individual variability of scale shape in two 
sympatric clupeid species the European pilchard, Sardina pilchardus (Walbaum, 1792) and the round sardinella, 
Sardinella aurita Valenciennes, 1847. Our aim was to test, whether the landmark-based geometric morphometric 
method is reliable for species identification from mixed samples.
Material and methods. The specimens of European pilchard and round sardinella were collected between 
May and October 2014 from the Gulf of Ambracia, Greece. The scale samples were taken from ten body areas 
(marked by letters A–J) of 487 specimens in total. A multiple-step analysis was conducted on randomly selected 
blind samples. The differences between body areas were assessed with canonical variate analysis (CVA) and 
discriminant function analysis (DFA) to compute generalized Mahalanobis distances (D) and discriminant 
functions (T2), respectively. 
Results. The CVA based on the total scale samples showed that in sardinella, all body areas differed significantly from 
each other (D = 2.54 ± 0.79, P < 0.001) except for one (area I vs. J: D = 22.36, P = 0.085). In pilchard, two body area 
pairs represented non-significant group pairs (area D vs. G: D = 1.03, P = 0.12; and area F vs. G: D = 1.21, P = 0.06), 
whereas all other areas were significantly different (D = 2.43 ± 0.88, P = 0.003). At the last step of the blind sampling 
procedure, all scales were correctly classified by species with an average discrimination rate as high as 96.3%. 
Conclusion. In contrast to scale identification based merely on morphology, the geometric morphometric method 
is capable of detecting differences in scale shape from mixed samples that are unattainable with the former 
approach. Therefore, a more reliable and effective species identification can be accomplished from recovered 
scales, especially when discriminating species within the same family or genus.
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INTRODUCTION
Scales are characteristic features for fishes and 

they are present in all major fish groups. Due to their 
morphological variability across taxa, fish scales are of 
high value for systematics and phylogenetic studies. Scale 
identification dates back over 160 years. Early research 
by Williamson (1851), Cockerell (1913), Chu (1935), and 
Lagler (1947) had demonstrated the value of scales in fish 
taxonomy. Later on, the development of keys and atlases 
based on scale characteristics allowed for more accurate 
identification to species level (Batts 1964, Mosher 1969, 
Casteel 1972, 1973, Patterson et al. 2002).

Traditionally, species identification is based on 
morphological characteristics. Scale characteristics such 
as the overall shape and structural features have proven 
to be useful not only for species but even for population 
identification, e.g., in walleye, Sander vitreus (Mitchill, 
1818) (see Jarvis et al. 1978); lake whitefish, Coregonus 
clupeaformis (Mitchill, 1818) (see Casselman et al. 
1981); Atlantic salmon, Salmo salar Linnaeus, 1758 (see 
de Pontual and Prouzet 1987); and striped bass, Morone 
saxatilis (Walbaum, 1792) (see Richards and Esteves 1997). 
Scale morphology allows discriminating even among fish 
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populations at large spatial scales, e.g., within the great 
lakes system (Casselman et al. 1981) or among rivers from 
different drainage basins (Richards and Esteves 1997). 
Advances in image processing and analytical approaches 
nowadays allow using scale shape as a discriminator 
among local populations. Morphometric analysis, based 
on landmark data (geometric morphometric method) has 
been proven to be a reliable tool to differentiate congeneric 
species (Ibáñez et al. 2007, 2012), allowing for the 
identification of populations on a local and regional scale 
(Staszny et al. 2012, Bräger et al. 2016b) as well as among 
sympatric phenotypes (Garduño-Paz et al. 2010). The 
geometric morphometric analysis is only sensitive enough 
to reveal inter- and intra-specific memberships, however, 
when sample comparability is ensured by deriving them 
from the same sampling area on the fish body, usually the 
left flank, and consistency among samples is guaranteed 
(Ibáñez et al. 2007). 

When fish scales are recovered from environmental 
or biological sources, e.g., sediment records or stomach 
contents, and the samples include scales of two or more 
species from mixed body areas (“mixed sample”), as is 
usually the case, the identification, until recently, was 
exclusively possible using the characteristic features 
of scale morphology. The usefulness of fish scales in 
the sedimentary records has been proven by several 
studies, e.g., in the reconstruction of paleoclimate and 
paleoceanographic conditions (Patterson et al. 2005); 
in the determination of environmental changes (Valdés 
et al. 2008); or in the assessment of paleoproductivity 
(Soutar and Isaacs 1969, Drago et al. 2009). Scales have 
provided similarly valuable information in studies of diet 
and feeding ecology by helping to identify prey items in 
fish (e.g., Mauchline and Gordon 1984), in birds (e.g., 
Ewins et al. 1994, Correia et al. 2016), and in mammals 
(e.g., Cottrell et al. 1996, Ford and Ellis 2006). Screening 
a large number of fish scales for species identification 
merely based on scale morphology, however, is rather time 
consuming. Furthermore, species determination among 
closely related species remains problematic (Bräger et al. 
2016a). 

Clupeiform species such as anchovies, herrings, shads, 
sardines, and their relatives possess derived cycloid scales 
(Bräger and Moritz 2016) that are easily shed and thus 
can be found in high densities in sediments or piscivorous 
species (Patterson et al. 2002, Correia et al. 2016, 
respectively). To distinguish clupeoid scales from other 
fish taxa is fairly easy, but the high degree of similarity 
in their scale morphology and the plasticity within 
single individuals impede species identification within 
families (Patterson et al. 2002, Bräger and Moritz 2016). 
In a previous study, Bräger et al. (2016b) showed that the 
scales of two sympatric clupeid species, i.e., European 
pilchard, Sardina pilchardus (Walbaum, 1792) and the 
round sardinella, Sardinella aurita Valenciennes, 1847, 
can be reliably discriminated using the landmark-based 
geometric morphometric method on scales of known 
origin. To ensure reliable species identification within 
Clupeidae, here we attempted to reveal inter- and intra-

specific, as well as, the intra-individual variability of scale 
shape in European pilchard and round sardinella. Our aim 
was to test, whether the method can also be used reliably 
for the species identification from mixed samples using 
blind sampling procedure. 

MATERIAL AND METHODS
Scale sampling and preparation. Scale samples from 

European pilchard and round sardinella were collected 
between May and October 2014. Specimens were 
purchased from commercial fishermen operating in the 
Gulf of Ambracia, a shallow and semi-enclosed gulf 
with an area of about 400 km2 in north-western Greece 
(Fig. 1). In total, 219 adult individuals of pilchard (mean 
SL ± SD: 81.7 ± 4.68 mm) and 268 adult individuals 
of sardinella (mean SL ± SD: 155.4 ± 8.51 mm) were 
measured and sampled. For scale sampling, we followed 
the ten body areas suggested by Bräger and Moritz (2016) 
that cover the entire body surface. 
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Fig. 1. The study area in north-western Greece 

The exact location of these ten body areas is indicated 
in Fig. 2 (body areas A–J). For each specimen, only a 
single scale was collected from one body area on the left 
side of the body to avoid auto-correlation problems among 
scales. The number of scale samples (sampled individuals) 
varied for the ten sampling areas between 16 and 28 for 
pilchard, and from 24 to 30 for sardinella (Table 1). The 
scale material was stored in 70% ethanol upon collection 
then processed in the laboratory following the procedure 
described in Bräger et al. (2016b).

Data analysis. The landmark-based geometric 
morphometric analysis was used to determine, whether the 
differences in clupeid scale shape were sufficient to enable 
a reliable discrimination among body areas from mixed 
samples in pilchard and sardinella. Seven landmarks were 
recorded on each scale (Bräger et al. 2016b) using “tpsUtil” 
v. 1.60 (Rohlf 2015a) and “tpsDig2” v. 2.17 (Rohlf 2015b) 
utility programs to identify the key features as suggested 
by Staszny et al. (2012). Shape data of the scales were 
analysed with the software program “MorphoJ” v. 1.06d 
(Klingenberg 2011). Group identities (by species and by 
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Table 1
Number of scale samples (= specimens) and body size 

variation between European pilchard, Sardina pilchardus 
and round sardinella, Sardinella aurita

Body 
area

Pilchard Sardinella

N SL [mm] N SL [mm]

A 21 82.1 ± 5.45 30 153.0 ± 5.86

B 27 80.6 ± 4.05 30 154.0 ± 3.99

C 17 83.2 ± 2.35 30 156.2 ± 5.76

D 21 82.1 ± 5.50 25 155.2 ± 6.70

E 16 83.0 ± 5.56 24 151.8 ± 4.34

F 20 81.7 ± 5.18 26 156.9 ± 4.15

G 27 80.7 ± 4.34 26 155.2 ± 5.34

H 28 81.1 ± 4.68 25 156.1 ± 5.69

I 16 82.9 ± 5.51 26 154.0 ± 2.87

J 26 80.9 ± 3.83 26 156.9 ± 4.03

Total 219 81.7 ± 4.68 268 155.4 ± 8.51

Body areas (A–J) are visualised in Fig. 2 (after Bräger and Moritz 
2016); N = number of scales, SL = standard length (mean ± standard 
deviation). 

body areas) were assigned to raw landmark coordinates. 
The centroid size (CS) was used as the size metric of the 
scales since it constitutes the only mathematically shape-
free size variable (Zelditch et al. 2004). To rotate, to scale 
and to align the raw coordinates into new shape variables, 
a Generalized Procrustes Analysis (GPA) was performed. 
Furthermore, a multivariate linear regression of shape 
(Procrustes coordinates) on size (logCS) was undertaken 
for each group to remove possible allometric effects. 
The significance of the relation, i.e., the presence of an 
allometric effect, was evaluated by using a permutation 
test against the null hypothesis of independence (10 000 
iterations). As data were free of allometric effects 
associated with growth, residuals of this regression 
provided the basis for further analyses (Mitteroecker et 
al. 2013). Finally, the differences between groups were 
assessed with a non-parametric canonical variate analysis 
(CVA) and a parametric discriminant function analysis 
(DFA) to compute generalized Mahalanobis distances 
(D) and discriminant functions (T2), respectively. The 
reliability of the results was examined with permutation 
tests with 10 000 iterations. 

The detailed procedure of the multi-step scale 
classification is as follows: 
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Fig. 2. Scale shape variation among body areas in European pilchard, Sardina pilchardus, and round sardinella, Sardinella 
aurita; scales are oriented with the anterior (rostral) part to the left of the image; scale bar = 1 mm; the schematic 
drawing of a clupeid fish with the sampling areas is adopted from Bräger and Moritz (2016) 
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• Examining the discrimination of scale shapes among 
body areas within species. 

• Randomly selecting 5 scales within each body area in 
both species and using them as blind samples. 

• Testing whether each blind sample can be identified on 
species level: 
• Blind sample compared to the scale shapes of the full 

reference database (i.e., all body areas) of the two 
species (classification Type I). 

• Blind sample compared to the scale shapes of the 
body areas (independently of the species). 

• Comparison of scale shapes from body areas that 
showed non-significant differences at the species 
level (classification Type II). 

Although the Type II classification was not necessary 
to be run in every case, for testing purposes it was 
performed for the entire dataset.  With this iterative, “step-
by-step” comparison, the species-level identification was 
also possible in those cases, when Type I classification 
failed (e.g., if significant differences between the blind 
samples and their original species were present).

RESULTS
In both clupeid species, the general pattern of scale 

shape changed according to the area of origin on the 
fish body. The most typical shapes among body areas 
varied from circular, cordate, to oval, even to slightly 
quadrilateral. Scales derived from the mid-lateral region 
of the fish body (areas C, D, E, F, and G) were extended 
in the dorsoventral axis, whereas scales from the dorsal or 

ventral edges of the body (areas A, B or I, J, respectively) 
were rather compressed or elongated in the anteroposterior 
axis. This elongation was found to be the most prominent 
in the ventral areas (I and J). Caudal peduncle scales (area 
H) were characterized by being relatively shorter in the 
anteroposterior axis resulting in a circular appearance of 
the scales (Fig. 2).  

The regression of scale shape (using Procrustes 
coordinates) on scale centroid size indicated notable 
allometry (dependence of shape on size) among body 
areas in both species (in pilchard: 2.54%, P < 0.001; in 
sardinella: 1.01%, P = 0.016). The mean scale shape 
among body areas of the two species showed different 
levels of overlap in the CVA with definite separation of the 
two species (Fig. 3). The areas of the mid-lateral region, 
i.e., C–B, D–B, G–B, D–G, and F–G in case of pilchard, 
as well as areas F and G in case of sardinella proved to 
be the most similar in their average scale shape (e.g., 
lowest Mahalanobis distances), whereas certain pairs of 
areas  B–I, C–I, and H–I in pilchard and E–I and D–I in 
sardinella differed most from each other. The CVA based 
on total scale samples (see Table 2) showed that in pilchard 
two body area-pairs represented a non-significant group 
pairs (area D vs. area G: D = 1.03, P = 0.12; and area G 
vs. area F: D = 1.21, P = 0.06), whereas all other areas 
were significantly different from each other (D = 2.43 ± 
0.88, P < 0.001). In sardinella, two body areas represented 
a non-significant pair (area I vs. J: D = 22.36, P = 0.085), 
whereas all other areas were significantly different from 
each other (D = 2.54 ± 0.79, P < 0.001). Between the two 
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species, scales of all body areas differed significantly and 
at much higher statistical distances (D = 3.61 ± 0.59, P < 
0.001). The validity of the results was confirmed by the 
large proportion of correct classifications with an average 
discrimination rate of 96.3% based on cross-validation. 
The detailed results of the blind sample classification 
based on randomly selected scales within each of the body 
areas are summarized in Tables 3 and 4. In most cases (in 
pilchard: body area B, C, D, E, F, G, H, J; in sardinella: 
body area A, B, C, D, E, F, I, J), the Type I classification was 
sufficient to classify a blind sample correctly at species-
level (e.g., with a non-significant difference from own 
species). In those cases, when the blind sample differed 
significantly from the entire sample of the species (i.e., 
in pilchard: area A and area I; in sardinella: area G and 
area H), the Type II classification could classify the blind 
sample well to the species (i.e., non-significant differences 
from the species). 

DISCUSSION
Scales of many fish taxa show variable shapes and 

possess a high degree of morphological plasticity within 
species and specimens, often making clear identification 
at species level difficult from recovered scale samples. 
This applies, particularly to clupeiform fishes. Several 
small pelagic fish species belonging to this order support 
some of the largest fisheries on Earth (Anonymous 2016) 
and play a crucial role in marine ecosystems, because their 
large biomass poses a critical link in marine food webs 

(Ganias 2014). Reliable and rapid species identification 
of this group from environmental samples would provide 
valuable information, for example, for fisheries (e.g., by 
discriminating species and stocks), foraging ecology (e.g., 
by identifying them as prey items) and paleoclimatic and 
paleoceanographic investigations (e.g., by determining 
species composition in sediment samples). 

In the presently reported study, scales from different 
body areas of the European pilchard and the round 
sardinella were successfully classified and discriminated 
in mixed samples. Although there are a few body areas that 
show similarities in scale shape within the same species, 
the last step of our multi-step analysis correctly classified 
among the body areas of each of the two species. Only 
scales from body area J (posterior ventral area) in pilchard 
could not be discriminated reliably from sardinella in the 
final step (Type II) but were already classified correctly 
in an earlier step (Type I). The DFA showed a significant 
difference between the two species for area J when the 
analysis was run again for sardinella. To increase the 
reliability of the analysis, elongated scales derived from 
either the dorsal or ventral edges of the fish body (areas 
A, B and I, J, respectively) might be disregarded for 
identification purposes. Our findings agree with those of 
Ibáñez and O’Higgins (2011) who also found scales of the 
mid-section of fish to be most useful for this identification 
method.

Scales that represent the typical round shape properties 
for a clupeid species are generally located on the flanks 

Table 3
Results of the blind sample classification in European pilchard, Sardina pilchardus

Classification
Body area

A B C D E F G H I J
Type I (D/P) 2.04/0.041 1.33/0.48 3.43/0.37 1.39/0.42 0.99/0.85 0.76/0.97 1.12/0.74 1.81/0.11 2.94/<0.001 1.78/0.13
Non-significant 
differences

A, G B, G, H B, C, E, G D, E, G E, G A, B, C, E,  
F, G, H, J

A, B, E, G G, H I H, J

Type II (D/P) 1.93/0.15 1.06/0.77 1.41/0.5 1.08/0.83 1.14/0.82 0.81/0.96 0.94/0.95 1.44/0.29 1.08/0.91 1.56/0.21
Type II (T2/P) 15.14/0.29 9.54/0.58 7.54/ 0.74 7.12/0.79 4.55/0.95 3.08/0.98 3.44/0.98 10.84/0.53 6.25/0.95 12.24/0.43

Body areas (A–J) are visualised in Fig. 2 (after Bräger and Moritz 2016); classification of groups: Type I = CVA-based on the total scale 
samples, Type II = CVA- and DFA-based on the non-significant sampling areas, CVA = canonical variate analysis, DFA = discriminant 
function analysis; D = Mahalanobis distance, T2 = discriminant functions, P = significance level; bold print denotes non-significant 
differences in body areas between pilchard and sardinella.

Table 4
Results of the blind sample classification in round sardinella, Sardinella aurita;

Classification
Body area

A B C D E F G H I J
Type I (D/P) 1.86/0.12 1.5/0.35 1.21/0.63 2.03/0.07 1.76/0.17 0.62/0.99 2.48/0.01 2.48/0.01 2.08/0.06 1.96/0.1
Non-significant 
differences

A, J A, B,
H, J

A, B, C, E,
G, H

D, H E A, B, C, E,  
F,  G, H, J

H H I, J H, I, J

Type II (D/P) 1.4/0.41 1.26/0.6 1.12/0.74 1.17/0.83 1.00/0.94 0.53/0.99 1.52/0.71 1.52/0.71 1.28/0.64 1.27/0.69
Type II (T2/P) 9.65/0.59 9.07/0.59 5.83/0.85 5.37/0.92 6.6/0.91 1.34/0.99 7.26/0.87 7.26/0.87 6.99/0.82 7.35/0.76

Body areas (A–J) are visualised in Fig. 2 (after Bräger and Moritz 2016); classification of groups: Type I = CVA-based on the total scale 
samples, Type II = CVA- and DFA-based on the non-significant sampling areas, CVA = canonical variate analysis, DFA = discriminant 
function analysis; D = Mahalanobis distance, T2 = discriminant functions, P = significance level; bold print denotes non-significant 
differences in body areas between pilchard and sardinella.
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and the lateral mid-section of the fish body (i.e., areas 
C, D, F, and G). According to the study of Shackleton 
(1988), scales from these body areas (i.e., “typical scales”) 
were observed in high numbers in the sediments, as well 
as in samples collected during predatory behaviour of 
bottlenose dolphins (Bräger et al. 2016a). Clupeiformes 
tend to lose their scales easily (Patterson et al. 2002), thus 
the occurrence of typical clupeiform scales in sediments 
or biological samples is high (Drago et al. 2009, Bräger 
et al. 2016a). Our investigation showed that the rate of 
correct classification of scales from the above-mentioned 
body areas (i.e., lateral mid-section of the fish body) was 
the highest; therefore the reliability of identifying them 
among recovered scales has a high likelihood. The large 
proportion of correct classifications, as well as the high 
number of examined scale samples, further increase the 
efficiency of species identification from mixed samples 
in environmental or biological sources. The geometric 
morphometric method eliminates any effect of allometric 
growth when using the centroid size of the scales as the size 
metric, followed by a linear regression and permutation 
tests. Therefore, knowing the exact length of the specimen 
that the scales originate from, which is an essential 
component of the standardizing process in the traditional 
morphometrics, is no longer needed for the analysis. 
Our results provide a reliable and efficient way for scale 
identification in paleontological and dietary studies that 
can help to overcome the limitations of morphological 
analyses used in former studies (e.g., Drago et al. 2009, 
Bräger et al. 2016a). 
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