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Background. In fishery biology, information on life-history traits is extremely useful for species conservation 
and the monitoring, management and sustaining of fish stocks. Nevertheless, detailed biological information 
is very limited for tropical fishes, especially for those with low economic value, such as the Atlantic bumper, 
Chloroscombrus chrysurus (Linnaeus, 1766). This species is commonly captured by artisanal fisheries in tropical 
waters and the lack of information makes difficult the development of strategies for the proper management of the 
species. Therefore, the presently reported study intended to provide new data on the biological parameters of C. 
chrysurus to fill the gap in the existing knowledge. 
Materials and methods. Life-history traits of the Atlantic bumper, C. chrysurus, were estimated from 335 fish 
collected in a western Atlantic region during fishery surveys carried out between 2010 and 2012. Age and growth 
were determined by annuli counts of sagittal otoliths. Growth parameters were calculated by adjusting the back-
calculated length-per-age to the von Bertalanffy growth model. Empirical equations and data on maturity were 
used to estimate the size and age at first maturity, as well as the optimum size and age. Theoretical longevity and 
natural mortality were also estimated for the species.
Results. Six age classes were identified and asymptotic length (L∞), growth rate (k), and the theoretical age when 
the specimen was at zero length (t0) for the whole population assumed the following values: L∞ = 25.49 cm, 
k = 0.32 year–1, and t0 = 0.058 years. No evidence of sexual size dimorphism was found, with no significant 
differences in growth characteristics and in the length frequency distribution between sexes. The principal 
vital parameters were as follows: size (L50 = 15.5 cm) and age (T50 = 2.9+) at sexual maturity, optimum length 
(Lopt = 13.08 cm), and optimum age (Topt = 2.1+), as well as its theoretical longevity (A0.95 = 9.17) and natural 
mortality (M = 0.92).
Conclusion. The determined size and age at sexual maturity, optimum length and age, theoretical longevity, and 
natural mortality indicate that the studied population of C. chrysurus is overexploited. The Atlantic bumper is 
vulnerable to fishing pressure and should be managed with caution.
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INTRODUCTION
Global changes have impacted ecosystems in many 

different ways by changing food web structures (Kolar 
and Lodge 2000), affecting productivity levels (Loustau 
et al. 2005), and even allowing species to extend their 
distribution range throughout the globe (Juárez et al. 
2008, Tavera et al. 2008). A good example, though not 
the only one, is the occurrence of the Atlantic bumper, 
Chloroscombrus chrysurus (Linnaeus, 1766), in Spanish 
waters, Gulf of Cádiz (Acosta et al. 2009), and in the 

Mediterranean Sea (Peña Rivas et al. 2013). The extension 
of the distribution range of this species may be linked to 
many factors, but especially to the current warming of 
the North Atlantic (Stebbing et al. 2002). In fact, some 
authors have predicted that warming conditions are likely 
to increase chances of survival and future naturalization 
of C. chrysurus in these regions (Acosta et al. 2009, Peña 
Rivas et al. 2013), which may result in several ecological 
and economic impacts (e.g., reducing and impacting 
native wildlife populations). 
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Faced with this prediction, it is extremely concerning 
that available information on biological parameters of 
Chloroscombrus chrysurus is still very scarce, especially 
for tropical regions where the species is widely distributed 
(Cunha et al. 2000, Campos et al. 2010). For instance, 
studies on growth parameters of C. chrysurus, up to now, 
have only been carried out with larvae in subtropical 
regions (Leffler and Shaw 1992, Sánchez-Ramárez and 
Flores-Coto 1998), and with data based on length frequency 
(García and Duarte 2006, Sossoukpe et al. 2017). Analyses 
of structures that can provide more consistent results, such 
as otoliths, have not been incorporated into these studies 
so far. 

The correct estimation of life-history traits of this 
species is not only important for its conservation, but also 
for the development of management strategies, especially 
with the current extension of its distribution range (Peña 
Rivas et al. 2013). Therefore, the presently reported study 
aims to contribute with current knowledge on the biology 
of C. chrysurus by estimating its life-history traits in 
tropical waters using a combination of otolith analysis 
and empirical equations to provide enough information on 
this species’ age, growth, population structure, maturity, 
longevity, and natural mortality.

MATERIAL AND METHODS
Fish were sampled in a western Atlantic region at the 

central coast of Alagoas, Brazil (centroid at 9°67′40′′S 
and 35°72′31′′W, Fig. 1), during fishery surveys carried 
out between May 2010 and April 2012. Samples were 
collected monthly using two different fishing gears: a 
beach seine net (mesh size: 140 to 254 mm) used to catch 

juveniles (total length: 2–14 cm) and a gillnet (25 to 170 
mm) to collect adults (15–25 cm). In the laboratory, fish 
individuals were identified to species level following 
Menezes and Figueiredo (1980), measured to the nearest 
1 cm (total length), weighted (in grams), sexed, and 
assigned to a maturity stage using macroscopic gonadal 
examination following Vazzoler (1996). 

The sagittae otoliths of each individual were removed, 
cleaned, dried, and stored in labelled vials for subsequent 
examination. Prior to analysis, to accomplish a better 
visualization of growth rings, otoliths were immersed in 
pure alcohol for 24 h until decalcification. Subsequently, 
a picture of otoliths submerged in pure alcohol and sulcus 
placed downwards was taken using a binocular stereoscope 
microscope Leica S8-APO (25–40 times magnification) 
with reflected light against a dark background. Age 
determination was achieved by counting growth rings, 
which were considered to be formed by one opaque band 
and one translucent band together (Fig. 2). Each otolith 
was read independently at least twice for two different 
readers with no prior information regarding length or sex. 
Later, differences in age estimation between readers were 
tested by a Student’s t-test. 

The periodicity of annulus formation was verified by 
the relative marginal increment analysis (MIA)
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where Rt is the total radius of the otolith; Rnc, the distance 
between the nucleus and last ring; and Rnc – 1, the distance 
between the nucleus and next-to-last ring formed 
(Branstetter and Musick 1994). Analysis of variance 
(ANOVA) was carried out to test significant differences 
in the MIA throughout the year, and monthly MIA values 
were compared to rainfall data [mm] by a linear regression 
to determine trends in bands formation.

To estimate the growth parameters of Chloroscombrus 
chrysurus, we first used the back-calculation model of 
Morita and Matsuishi (2001) to remove bias due to age 
effects (Wilson et al. 2009). This model assumes that 
otolith radius results from a linear combination of both 
fish length and age (Wilson et al. 2009) and it is calculated 
as follows

9°30’0’’

10°0’0’’

36°0’0’’36°30’0’’

-

-

--

Alagoas

20
 m

50
 m

10
0 m

10 km

--

Brazil

Fig. 1. Map of the study area, located in the coast of 
Alagoas, Brazil

Fig. 2. Otolith of Chloroscombrus chrysurus caught in the 
tropical Atlantic Ocean; arrows indicate growth rings
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where Lt is the back-calculated fish body length at age t; 
LT is the fish body length at time of capture T; Ot is the 
otolith length at annulus (age) t; OT is the otolith length 
at the time of capture T; and α, β, and γ are the constants 
obtained from the multiple linear regression analysis. 
Growth in length was then modelled by the von Bertalanffy 
growth model (VBGM) using a nonlinear regression

( )( )0 1  k t t
tL L e− −
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where Lt is the length at age t; L∞ is the theoretical 
asymptotic total length; k is the growth coefficient 
describing the rate of growth [year–1] towards L∞, and t0 is 
the hypothetical age (in years) at a total length of zero. The 
VBGM was estimated for males, females and the whole 
population (both sexes combined and specimens with 
indeterminate sex).

Length at first maturity (L50) for the whole population 
was estimated by fitting a logistic model using the 
percentage of mature individuals per 1 cm size class (King 
2007)
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where, Y is the percentage of mature individuals at a length 
X, and a and b are the resulted constants. The model was 
fitted using a log-transformed abundance of individuals 
per size class and the size where 50% of individuals were 
mature was assessed by –a·b–1. Age at sexual maturity 
(t50) was known by using the inverse version of the growth 
equation as suggested by King (2007)
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Estimated growth parameters were also used to 
calculate natural mortality (M), length at maximum 
yield per recruit (Lopt), optimum age (Topt), and longevity, 
defined as the time that individuals take to achieve 95% 
of the asymptotic length (A0.95). Natural mortality (M) was 
calculated by Pauly’s empirical equation

 log 0.0066 0.279·log 0.6543·log
0.4634·logTemp

M L k∞= − − + +
+

where L∞ and k are the von Bertalanffy growth parameters, 
and Temp is the mean water temperature (°C) (Pauly 1980). 
Data on annual sea surface temperature was retrieved 
from the Brazilian National Institute of Meteorology 

(INMET) and the mean value of 29.87°C was incorporated 
into the equation. 

The length at maximum yield per recruit (Lopt), which 
expresses the length at which natural mortality equals to 
growth rate was calculated following Beverton (1992)
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where M is the natural mortality and L∞ and k are the 
estimated growth parameters from the VBGM. Optimum 
age (Topt), the age where fish reaches its highest biomass, 
was estimated by the equation of Krishnan Kutty and 
Qasim (1968)
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Theoretical longevity, here defined as the time that 
individuals take to achieve 95% of the asymptotic length, 
was calculated using the equation described by Taylor 
(1958)
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where, L∞, k, and t0 are the estimated growth parameters. 
Maximum and minimum values (standard errors) of t0 and 
k (growth parameters) were used to estimate longevity 
confidence intervals. 

We also examined sexual size dimorphism in species 
total length by analysis of variance (ANOVA). Data was 
previously tested for normality and homoscedasticity 
using Shapiro–Wilk and Levene’s tests, respectively. 
Additionally, length–weight relations (LWR) for females, 
males, and the whole population were estimated by linear 
regressions using the equation

log  log ·logW a b TL= +

where W is the body weight, TL is the total length, a is the 
intercept, and b is the slope (Le Cren 1951, Froese 2006).

Statistical analyses were all carried out with the 
software R statistics (version 3.1.3) at a significance level 
of P < 0.05.

RESULTS
In this study, a total of 335 fish were included in the 

estimation of population parameters of Chloroscombrus 
chrysurus. Out of all individuals, 133 were females, 100 
were males, and in 102 sex could not be determined. 
Total length ranged from 2.5 to 26.4 cm (considering all 
specimens, including the individuals of undetermined 
sex), and no evidence of sexual size dimorphism was 
found (ANOVA, P > 0.05, Fig. 3). LWR parameters and 
related statistics are given in Table 1. All regressions were 
highly significant (P < 0.01) with correlation coefficients 
(r2) of 0.76, 0.80, and 0.98 to males, females, and the 
whole population, respectively.



De Queiroz et al.4

No suitable samples were collected in June for 
calculating the MIA. Yet, marginal increments were 
significantly different among months (ANOVA, P < 0.01), 
with increments presenting a trend of increasing monthly 
until reaching its peak in May, followed by a decrease in 
their value starting in July (Fig. 4). Furthermore, changes 
in marginal increment were significantly correlated to 
seasonal fluctuations in rainfall rates (P < 0.01, r2 = 0.44).
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Fig. 3. Length frequency distribution of females (A) and 
males (B) of Chloroscombrus chrysurus in the tropical 
Atlantic Ocean
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Fig. 4. Annual variation in the marginal increment analysis 
(MIA) of Chloroscombrus chrysurus and the relation 
between monthly values and rainfall levels; number of 
otoliths used to get mean values are presented above 
error bars

Both readers’ age estimates were symmetrical (P < 
0.05). Estimated ages for Atlantic bumper ranged from 0+ to 
6+, though the majority of fish sampled belonged to 3+ and 4+ 
age classes (60.89%). Observed growth parameters did not 
differ between sexes (Table 2), hence the von Bertalanffy 
growth curve was recalculated using all specimens, 
including the individuals with indeterminate sex (Fig. 5, 
r2 = 0.88, n = 335). Information on growth parameters, 
theoretical longevity (A0.95) and natural mortality (M) for 
C. chrysurus are summarized in Tables 2 and 3.

The size at first maturity (L50) for C. chrysurus was 
15.5 ± 2.8 cm (Fig. 6), and the age at sexual maturity (T50) 
was 2.9+ years–1. Optimum length and age were smaller 
than the L50 and T50, being 13.08 cm and 2.1+ years–1, 
respectively.

DISCUSSION
This study represents the first comprehensive reference 

on age and growth estimation for Chloroscombrus 
chrysurus based on otolith analyses. The use of otoliths 
in age estimation for tropical fish was previously 
considered infeasible due to complex interactions between 
physiological and environmental factors (Blaber 2002), as 
well as miscounts of growth rings (Brothers et al. 1976). 
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Nevertheless, the results presented herein, such as the 
symmetrical counting of growth rings between different 
readers and the marginal increment analysis, show that 
these structures can provide consistent information on 
growth characteristics for C. chrysurus.

 Marginal increment analysis (MIA) indicated a clear 
trend in bands formation (see Fig. 4), demonstrating that 
growth rings of Chloroscombrus chrysurus are formed 
once a year and are strongly correlated to seasonal changes 
in rainfall rates. Increment bands may be associated with 
both environmental conditions and cyclical biological 
process (Morales-Nin and Panfili 2005), depending on 
life-history requirements of species (Sousa et al. 2015). 
For many tropical species, a strong relation between 
rainfall and growth has been previously reported (Bwanika 
et al. 2007, Ong et al. 2015, Sousa et al. 2015, Efitre et al. 
2016). This relation results, mainly, from changes caused 
by rainfall in water physicochemical parameters (i.e., 
turbidity, salinity, and light penetration) and productivity 
levels (Barletta et al. 2005, Pereira et al. 2015), as these 
changes may provide better feeding condition for fish 
(Bergenius et al. 2005). 

The von Bertalanffy growth curve fitted to our 
observed data adequately. Growth parameters estimated 
herein (L∞ = 25.4 cm, k = 0.32 year–1, t0 = 0.05) differed 
from those calculated for species using length-frequency 
data in south-eastern and southern Brazil (L∞ = 45.1 
cm, k = 0.22 year–1, t0 = –0.65) by Cergole et al. (2006), 
and in Caribbean Sea (L∞ = 30.5 cm, k = 0.63 year–1) 
by García and Duarte (2006). These differences may be 

associated with many factors (i.e., climate type, latitudinal 
differences) (Tarkan and Vilizzi 2015), but especially 
to the size range of individuals once growth parameters 
are very sensitive to samples—larger individuals tend 
to increase asymptotic length as growth rate decreases 
(Espino Barr et al. 2008). For example, in south-eastern/
southern Brazil, larger individuals of C. chrysurus have 
been reported, with species growing up to 42 cm (Cergole 
et al. 2006), while in the studied region the maximum 
length registered for the species was 30 cm (Lessa and de 
Nóbrega 2000). Furthermore, it is important to be noticed 
that methodological differences in age determination may 
unduly influence parameters estimation and, consequently, 
provide false impressions of the growth potential of fish 
species.

The lack of significant differences in growth 
characteristics between sexes found for Atlantic bumper 
appears to be very common among Carangidae species in 
tropical regions, such as Trachinotus botla (Shaw, 1803) 
(see Parker and Booth 2015) and Trachurus picturatus 
(Bowdich, 1825) (see Garcia et al. 2015). Although many 
factors may regulate sexual size dimorphism in species, 
mechanisms underlying these differences between sexes 
remain poorly understood (Fairbairn 2005, Young 2005). 
For example, even though studies have shown that 
environmental conditions may affect sexes differently, 
it appears that these changes are more consistent among 
larger taxa (Estlander et al. 2017). For smaller species, 
such as C. chrysurus, sexual size dimorphism is more 
understated and studies in larger scales (encompassing 

Table 1
Descriptive statistics and estimated parameters  

of length–weight relations for Chloroscombrus chrysurus caught in tropical waters of the Atlantic Ocean between 
May 2010 and March 2011, and from August 2011 through April 2012 

Sex n Length [cm] Weight [g]
LWR parameters

a 95% CI of a b 95% CI of b r2

Female 133 13.9–25.3 24.2–131.6 0.004 0.002–0.011 3.19 2.92–3.46 0.80
Male 100 13.7–26.4 24.4–138.5 0.014 0.005–0.037 2.81 2.50–3.12 0.76
Population 355 2.5–26.4 0.1–138.5 0.013 0.012–0.015 2.84 2.80–2.88 0.98

n = number of individuals, a = intercept, b = slope (of LWR), 95% CI = 95% confidence intervals range (of a and b), r2, correlation 
coefficient.

Table 2
The von Bertalanffy growth parameters estimated for 

Chloroscombrus chrysurus caught in tropical waters of 
the Atlantic Ocean between May 2010 and March 2011, 

and from August 2011 through April 2012

Sex n
Growth parameter

L∞ [cm] k [year–1] t0

Female 133 25.619 ± 0.805 0.323 0.032 ± 0.045
Male 100 26.438 ± 1.218 0.316 0.057 ± 0.064
Whole 
population 355 25.494 ± 0.640 0.328 0.058 ± 0.035

n = number of individuals, L∞ = theoretical asymptotic total length, 
k = growth rate, t0 = hypothetical age at a total length of zero.

Table 3 
Estimated theoretical longevity (A0.95) and natural mortality 

(M) for Chloroscombrus chrysurus caught  
in tropical waters of the Atlantic Ocean between May 2010 
and March 2011, and from August 2011 through April 2012

Sex
Longevity [years] Natural mortality [year–1]

A0.95 95% CI M 95% CI
Females 9.30 ± 0.50 0.926 ± 0.030
Males 9.53 ± 0.76 0.905 ± 0.046
Whole 
population 9.17 ± 0.44 0.938 ± 0.027

A0.95 = the time that individuals take to achieve 95% of the 
asymptotic length.
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different latitudes) are necessary to a better understanding 
on patterns of body growth and size variation.

Both, length (Lopt) and age (Topt) at maximum yield per 
recruit for Chloroscombrus chrysurus were smaller than 
the length (L50) and age (T50) at first maturity, which is 
a typical reproductive strategy of small fishes (Beverton 
1992). As small fishes have high predation risk, and 
once maximum possible yield is determined by the ratio 
between growth and mortality, smaller species tend to 
reach maximum yield during younger ages and smaller 
sizes in a trade-off of reproduction and survival (Jensen 
1996, Froese and Binohlan 2000).

Estimated natural mortality (M = 0.938 year–1) was 
slightly smaller than the one reported for the species in the 
Caribbean Sea (M = 1.29 year–1) (García and Duarte 2006). 
Yet, this value was expressively high when compared to 
other tropical carangid species, such as Trachurus declivis 
(Jenyns, 1841) (M = 0.63 year–1) (Stevens and Hausfeld 
1982). While similarities in mortality rates are expected 
among species in the same family (Pascual and Iribarne 
1993), adaptations to local conditions and exploitation 
levels may cause these rates to vary. In the particular case 
of C. chrysurus, though not being considered a commercial 
target species, this species is frequently caught by artisanal 
fisheries in tropical regions, especially as by-catch (Ambrose 
et al. 2005, Alves et al. 2012, Cunha 2015). Indeed, our 
estimated theoretical longevity suggests that the Atlantic 
bumper may be vulnerable to fishing pressure, showing 
a high longevity (A0.95 = 9.17 years) despite its relatively 
small body size, which is a typical feature of overexploited 
species (Wiedmann et al. 2014).

In summary, Chloroscombrus chrysurus was found 
to be a small, fast growing, and long-lived fish. Such 
characteristics indicate that the species may be undergoing 
high levels of exploitation, and, therefore, should be 
managed with caution. We suggest that further studies of 
population structure of C. chrysurus incorporate geographic, 
climate, and fishery variables and hope that information 
provided herein may be used for developing management 
strategies for this species, as well as its conservation.
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