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Background. Overfishing and habitat degradation caused a decline of populations of many fish species belonging 
to the speciose family Sciaenidae. A reliable taxonomic framework is a prerequisite for implementing effective 
stock management and conservation measures, but phylogeny and taxonomy of the Sciaenidae remain poorly 
resolved. As traditionally used morphological and single gene-based molecular markers carry a too limited 
phylogenetic signal for the task, mitochondrial phylogenomics may be a more suitable tool. The freshwater drum, 
Aplodinotus grunniens Rafinesque, 1819, is one of the few Sciaenidae species that live in freshwater habitats, 
which makes it an important model for studying the phylogeny and evolution of Sciaenidae. 
Material and methods. We sequenced and characterized its mitogenome, and reconstructed the phylogeny of 
Sciaenidae using mitogenomes of 28 species. 
Results. The architecture of the mitogenome (16487 bp in length) is standard for this family, and three typical 
elements were identified in the control region: extended termination associated sequences, central conserved 
region, and conserved sequence block. Poor availability of sciaenid mitogenomes (especially those belonging 
to different lineages) prevented us from resolving the phylogeny of this family with confidence. Notably, our 
results indicate that Larimichthys and Collichthys species may belong to a single genus, and we suspect that 
the mitogenome of Chrysochir aureus (Richardson, 1846) has been misidentified taxonomically, and urge its 
resequencing. 
Conclusion. The sequencing of additional mitogenomes belonging to non-represented and poorly represented 
lineages is needed to facilitate the understanding of phylogeny and taxonomy of Sciaenidae. 
Keywords: freshwater drum, mitogenome, control region, phylogenetics, Sciaenidae

ACTA ICHTHYOLOGICA ET PISCATORIA (2020) 50 (1): 23–35

*	 Correspondence: Prof. Pao Xu and Prof. Ruobo Gu, Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agricultu-
re of Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China, 通讯作者：徐跑研究员和顾若波研究员，
中国水产科学研究院淡水渔业研究中心，农业农村部淡水鱼类遗传育种与养殖生物学重点开放实验室，江苏　无锡 214081；phone: +86-051085557959,  
e-mail: (XP) xup@ffrc.cn, (GR) gurb@ffrc.cn, (HW) wenhb@ffrc.cn, (XM) maxueyan@ffrc.cn, (ZC) caozheming@ffrc.cn, (DH) huad@ffrc.cn, (WJ) jinwu@ffrc.cn, 
(GS) 1145720221@qq.com. 

DOI: 10.3750/AIEP/02701

INTRODUCTION
The freshwater drum, Aplodinotus grunniens 

Rafinesque, 1819, one of the most widely distributed 
freshwater fish in North America (Boschung and Mayden 
2004), is one of the few Sciaenidae species (and the only 
North-American sciaenid species) that live in freshwater 
for the entirety of their lifespan. Thus, this species may be 
an important model to study the phylogeny and evolution 

of the Sciaenidae, especially the regional biogeographic 
patterns of marine and freshwater varieties. The freshwater 
drum has good breeding prospects in China (Zhou 2005), 
and it is the only natural host required for the artificial 
breeding of pink heelsplitter (Potamilus alatus) in China 
(Wen et al. 2018). Because of this, in 2016, we introduced 
a batch of freshwater drum fry from the United States 
for artificial domestication research and established a 
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stable population in the Freshwater Fisheries Research 
Center in Wuxi. Although many aspects of the freshwater 
drum biology have received ample scientific attention, 
including the morphology and growth (Rypel 2007), diet 
(Jacquemin et al. 2013), reproductive biology (Swedberg 
and Walburg 1970), behaviour (Rypel and Mitchell 2007), 
and carcass composition (Zhou 2005), the sequence of its 
mitochondrial genome remains unavailable.

The family Sciaenidae (Perciformes), to which the 
freshwater drum belongs, currently comprising over 280 
species in more than 60 genera (Froese et al. 2019), is one 
of the most important fish families in the world’s capture 
fisheries and aquaculture (Anonymous 2016). However, 
overfishing and habitat degradation resulted in a worrying 
level of the population decline of a number of sciaenid 
species, so the IUCN-Species Survival Commission 
identified the entire family as a conservation priority 
(Anonymous 2018). A reliable taxonomic framework is a 
prerequisite for implementing effective stock management 
and conservation measures (Cariani et al. 2017). The 
phylogeny of the Sciaenidae has been studied using 
morphological features (mostly relying on otolith and swim 
bladder morphology), but these have major limitations, 
that have been discussed at length before (Sasaki 1989), 
as well as several different single gene-based molecular 
markers (Lakra et al. 2009, Cheng et al. 2012, Ma et 
al. 2012, Lo et al. 2017). However, due to high species 
richness and wide distribution of (predominantly) marine 
species, resolution provided by small molecular markers 
is likely to be too low for this problem, so taxonomy and 
phylogeny of this family remain only partially resolved 
(Barbosa et al. 2014, Xu et al. 2014, Lo et al. 2015, 2017, 
Silva et al. 2018). This indicates that a molecular marker 
with a higher resolution may be needed to resolve the 
evolutionary history of this speciose family. Indeed, the 
most important recent advances in the understanding of the 
historical biogeography of the Sciaenidae were achieved 
using a combined mitonuclear set of six concatenated 
genes (Lo et al. 2015) and a set of complete mitochondrial 
(mt) genomic sequences (Xu et al. 2014). 

Mt genomes, which usually contain 12–13 protein-
coding genes (PCGs), provide much higher phylogenetic 
resolution than single-gene markers, so they are becoming 
an increasingly popular tool for resolving phylogenetic 
debates (Der Sarkissian et al. 2015, Lan et al. 2017, 
Bourguignon et al. 2018, Zou et al. 2018). Although a 
number of studies relied on this approach to study the 
phylogeny of the Sciaenidae (or selected sciaenid taxa) 
(Cheng et al. 2010, 2012, Xu et al. 2015, Zhao et al. 2015, 
Lin et al. 2017, Wang et al. 2017, Yang et al. 2018), the 
resolution of the mitochondrial phylogenomics approach 
is still hampered by the limited number of mt genomes 
available for this family.

Therefore, the objective of this study was to sequence 
and characterize the mitochondrial genome sequence 
of the freshwater drum, and use the sequence to study 
its evolutionary history and the taxonomy of the family 
Sciaenidae. For the latter, we constructed the phylogenetic 
tree of the Sciaenidae, based on 28 complete mitochondrial 

genomes of species belonging to this family. We discuss 
the phylogenetic position of the freshwater drum within 
the Sciaenidae, suggest some new viewpoints on the 
taxonomy of the Sciaenidae, and provide an important 
reference for future studies of the taxonomy and evolution 
of the Sciaenidae. 

MATERIALS AND METHODS
Sample source and genomic DNA extraction. Five 
freshwater drum specimens (body length = 15.18 cm; age 
= 1 year old) were randomly selected in July 2017 from 
a batch of fry introduced a year earlier from the United 
States by the Freshwater Fisheries Research Center of the 
Chinese Academy of Fishery Sciences. We cut off a small 
fragment of caudal fins from live specimens, washed the 
collected clips with sterile water 2–3 times, and stored in 
absolute ethanol at –20°C. Before the DNA extraction, 
approximately 50 mg of (each) fin clip was cut with 
sterile scissors and again rinsed in sterile water. The 
extraction was performed using DNA Rapid Extraction 
Kit (Beijing Aidlab Biotechnologies) according to the kit 
manual. The DNA integrity was determined by agarose 
gel electrophoresis and a NANODROP 2000 (Thermo 
Scientific) spectrophotometer (OD 260/280 value). The 
DNA was diluted to a concentration of about 100 ng ∙ 
μL–1, then split into vials and stored in –20°C. This study 
was approved by the Animal Care and Use Committee of 
the Nanjing Agricultural University (Nanjing, China). The 
handling of fishes was conducted in accordance with the 
Guide for the Care and Use of Experimental Animals of 
China.
Primer design, LA-PCR amplification, and sequencing. 
Primers (Table 1) were designed according to the mt 
genomic sequences of closely related species: Bahaba 
taipingensis (Herre, 1932) (JX232404), Sciaenops 
ocellatus (Linnaeus, 1766) (JQ286004), Argyrosomus 
amoyensis (Bleeker, 1863) (KM257863 and KU738606, 
the latter being nominally labelled as “Nibea miichthioides 
Chu, Lo et Wu, 1963”, a junior synonym of A. amoyensis), 
Argyrosomus japonicus (Temminck et Schlegel, 1843) 
(KT184692), and Miichthys miiuy (Basilewsky, 1855) 
(HM447240). The long PCR (LA-PCR) amplification was 
performed using the standard LA Taq polymerase (Takara). 
The PCR conditions were as follows: initial denaturation at 
94°C for 2 min, then 35 cycles of denaturation at 94°C for 
30 s, annealing at 50°C for 30 s, and extension at 72°C for 
1 min ∙ kb–1, followed by the final extension at 72°C for 10 
min. The total volume for PCR and LA-PCR was 50 μL, of 
which Takara LATaq (5 U ∙ μL–1) was 0.5 μL, 10 ∙ LATaq 
Buffer II (Mg2+) was 5 μL, dNTP mixture (2.5 mM) was 
8 μL, template was 60 ng, and the total volume was then 
made up with distilled water. The final concentration of the 
forward and reverse primers was 0.2~1.0 μM, and that of 
MgCl2 was 2.0 mM. The PCR products were purified using 
AidQuick Gel Extraction Kit (AidLab), and sequenced 
directly, or if needed first cloned into a pMD18-T vector 
(Takara, JAP) and then sequenced, by the dideoxynucleotide 
procedure, using an ABI 3730 automatic sequencer (Sanger 
sequencing) with the same set of primers.
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Mitochondrial genome assembly and annotation. 
Mt genome was assembled and annotated largely as 
described before (Zou et al. 2017, Zhang et al. 2018). 
Briefly, sequenced fragments were quality-proofed by 
visually inspecting the electropherograms and queried 
against the GenBank using BLAST to confirm that the 
amplicon is the target sequence. The complete mt genome 
sequence was assembled from the sequenced fragments 
using DNAstar software (Burland 2000). We made sure 
that the overlaps between sequences were identical, the 
genome circular, and that no numts (Hazkani-Covo 
et al. 2010) were incorporated. ORFs for PCGs were 
located using DNAstar, and manually fine-tuned via 
a comparison with available sciaenid orthologs using 
BLAST and BLASTx. tRNAscan (Schattner et al. 
2005) and ARWEN (Laslett and Canbäck 2008) were 
used to identify tRNAs. PhyloSuite (Zhang et al. 2020) 
was used to parse and extract the mt genome annotated 
in a Microsoft Word document, as well as to create the 
files for submission to the GenBank (Accession number 
MG599474).
Mitochondrial genome characterization. The Mtviz 
tool (Bernt et al. 2019) was used to map the architecture 
of the mitochondrial genome. The total length and base 
composition were analysed using DNAStar’s Editseq 7.1 
tool. Tandem Repeats Finder (Benson 1999) was used to 
search for the long-segment tandem repeats contained in 
the control region, and the repeated sequences were then 
manually analysed and refined. D-loop sequences were 
aligned using MAFFT (Katoh and Standley 2013), and 
specific motifs using visual comparison in Mega X (Kumar 
et al. 2018). The homing sequences of conserved sequence 
blocks CSB-F and CSB1 were used as the boundaries to 
discriminate TAS, CD, and CSB,. 
Phylogenetic and comparative analyses. The complete 
mitochondrial genome sequences of 27 species of the 
family Sciaenidae were retrieved from GenBank, along 
with three species belonging to three closely related families 
from the Perciformes order as outgroups: Acanthopagrus 
schlegelii (Bleeker, 1854) of the family Sparidae, Siniperca 
chuatsi (Basilewsky, 1855) of the family Percichthyidae, 
and Hapalogenys nigripinnis (Temminck et Schlegel, 

1843) (the valid name of the GenBank entry NC_014404: 
Hapalogenys nitens) of the family Haemulidae. PhyloSuite 
was used to batch-download all selected mitogenomes 
from the GenBank, re-annotate ambiguously annotated 
tRNA genes with the help of ARWEN, and extract 
genomic features. To assess the impacts of different 
algorithms and mutational saturation, we conducted 
phylogenetic analyses on sequences using both nucleotide 
(NUC dataset) and amino acid (AAs dataset) sequences of 
all 13 concatenated PCGs, and two different algorithms: 
Bayesian Inference (BI) using MrBayes 3.2.6 (Ronquist 
et al. 2012), and Maximum Likelihood (ML) using 
IQ-TREE (Trifinopoulos et al. 2016). Including data 
extraction, all steps for phylogenetic analyses were 
conducted in the Flowchart mode of PhyloSuite, with 
help of several plug-in programs integrated into it: 
sequences were aligned in batches with MAFFT using 
‘--auto’ strategy and codon alignment mode; poorly 
aligned segments were removed from the alignments with 
Gblocks (Talavera and Castresana 2007) using the default 
PhyloSuite settings; aligned genes were concatenated 
using PhyloSuite; ModelFinder (Kalyaanamoorthy et al. 
2017) was used to select the best-fit evolutionary model 
using the BIC criterion; ML phylogenetic inference was 
performed with 1000 bootstrap replicates; and BI analysis 
was performed with default settings (burnin = 0.25), 
5 · 106 generations, sampling every 1000 generations, 
where the stationarity was considered to be reached when 
the mean standard deviation of split frequencies was 
< 0.01, ESS (estimated sample size) value > 200, and 
PSRF (potential scale reduction factor) approached 1. All 
analyses were conducted using the corresponding selected 
best-fit models: NUC = GTR + I + G, and AAs = mtVer 
+ F + R4. Phylograms and gene orders were visualized 
in iTOL (Letunic and Bork 2007) using dataset files 
generated by PhyloSuite.

RESULTS AND DISCUSSION
Characteristics of the mitochondrial genome. The 
length of the mitochondrial genome of the freshwater 
drum was 16487 bp. It contained 13 protein-coding genes 
(total length 11439 bp), 2 rRNA genes (total length 2650 

Table 1 
Primers used for the PCR amplification of the mitochondrial genome of Aplodinotus grunniens

Gene/region Primer name Sequence (5′–3′) Length [bp]
12S-16S YUF1 GACACCTTGCTTTGCCACAC 2475

YUR1 CGTACTAGAAAAGATCATGGC
16S-tRNA-Cys YUF2 GAGCCCATATCGACAAGAGG 2870

YUR2 CTGAAGAAGTAGGCTAGCGC
tRNA-Ala-NAD4 YUF3 CTAACCCACATCTTCTGTATGC 5513

YUR3 CGCTAAAGGCTATGATGAGG
NAD4-NAD5 YUF4 CAGGCTGAACCTTTCTTAGCC 1538

YUR4 GTTGAGAGTTGTGAAGATGG
NAD5 YUF5 GCTCCTAAAGGATAACAGCTC 1370

YUR5 CTACTCGAAGACTATAGATG
12S-COX1 YUF6 GCCTAGCCCTCACAGGCACC 3766

YUR6 GTGTTCTTTCTAACCACTC
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bp), 22 tRNA genes (total length 1549 bp), and several 
non-coding regions (NCR) (Fig. 1, Table 2). Nine genes 
(8 tRNAs and nad6) were located on the minus (–) strand, 
and the remaining 28 genes were located on the plus (+) 
strand. There were 11 gene overlaps in the genome, the 
size of which ranged from 1 to 10 bp, adding up to a total 
of 33 bp. Non-coding regions included a control region 
(817 bp), an origin of the ± strand replication (OL) (36 
bp), and intergenic bases adding up to a total of 29 bp. 
The whole mitochondrial genome of the freshwater drum 
had an AT content of 53.6% and a GC content of 46.4%. 
This is relatively similar to the base composition of most 
other Sciaenidae species (52%–56%), with the exception 
of species in the genus Johnius, which have a base 
composition different from other sciaenids (Fonseca et al. 
2014, Xu et al. 2015, Yang et al. 2018).

All 13 mitochondrial protein-coding genes used 
ATG as the start codon. The most common termination 
codon was TAA (6 genes); cox1 used AGA; nad3, nad5, 
and nad6 used TAG; and cox2, nad4, and cytb used an 
incomplete termination codon T-- (Table 2). All these 
characteristics are common for sciaenid mt genomes (Cui 
et al. 2009, Liu et al. 2010, Cheng et al. 2012, Zhao et al. 
2015, Sun et al. 2017, Yang et al. 2018).
Origin of the + strand replication (OL). The 
OL was located between tRNA-Asn and tRNA-Cys genes. 
Its secondary structure exhibited a large hairpin loop with 
a stem length of 10 bp and a loop length of 12 bp. It had 
a very high A base content (58%), and a low T content 
(8%), which is similar to the A bias of the OL loop region 
reported in Epinephelus akaara (Temminck et Schlegel, 
1842) (see Zhuang et al. 2009). Intriguingly, Larimichthys 
crocea (Richardson, 1846) and Larimichthys polyactis 
(Bleeker, 1877) of the same family both exhibited G bias 
(Liu et al. 2010).
Control region: structural characteristics. The control 
region was 817 bp in length and located between tRNA-
Pro and tRNA-Phe genes, and it exhibited an A + T bias 
of 62.8% (A = 32.8%, T = 30%, C = 22.2%, G = 15.1%), 
both of which features are common in this family of fishes 
(Cheng et al. 2012, Zhao et al. 2015, Yang et al. 2018). 
In vertebrates, mitochondrial control regions are usually 
divided into a typical tripartite structure comprised of the 
extended termination association sequence (TAS), central 
conserved domain (CD), and conserved sequence block 
(CSB) (Sbisà et al. 1997). We compared the control region 
of the freshwater drum to the homologous sequences of 
other sciaenid fish species (Tables 3 and 4) and identified 
the TAS (250 bp), CD (362 bp), and CSB (205 bp) regions. 
Termination-associated sequence (TASes). The TAS is 
believed to act as a signal for the termination of + strand 
elongation in vertebrates (Sbisà et al. 1997). In most 
fishes, the conserved TAS motif is TACAT, including its 
complementary palindrome ATGTA (Cheng et al. 2012, 
Zhao et al. 2015). The extended TAS of freshwater drum 
contained four TACAT motifs, the first of which was 
followed by ATGTA, with an AT interval between them. 
Apart from Miichthys miiuy, Siniperca chuatsi (both 
4 TACAT repeats), and Acanthopagrus schlegelii (5 

TACAT repeats), other species included in our dataset had 
less than 4 TACAT motifs (Table 4). We did not identify 
the ACAT motif in Johnius grypotus (Richardson, 1846), 
whereas Sciaenops ocellatus and Larimichthys crocea 
lacked the ATGTA motif. Intriguingly, the two conspecific 
Argyrosomus amoyensis mitogenomes exhibited different 
numbers of TACAT motifs (3 and 2). This is likely to be 
a reflection of the generally fast evolution of the D-loop, 
and an indication of functional redundancy of multiple 
TACAT motifs. 
Central conserved region (CD). Although the CD region 
in mammals generally contains five blocks (CSB-B to 
CSB-F) (Sbisà et al. 1997), fishes mostly possess only 
three: CSB-D, CSB-E, and CSB-F (Lee et al. 1995, Zhao 
et al. 2015). All three motifs were successfully identified 
in the CD of the freshwater drum, as well as in the majority 
of other (13) species included in our dataset (Table 3). 
The sequence alignment revealed that CSB-D and CSB-F 
sequences were relatively conserved, whereas the CSB-E 
sequence was very variable (Table 3). This is consistent 
with the results of the comparative sequence analysis of 
Bagridae and Botiinae (see Zhang et al. 2003, Tang et 
al. 2005). Acanthopagrus schlegelii lacked the CSB-F 
sequence, only CSB-D was identified in Johnius grypotus, 
only CSB-E was identified in Larimichthys crocea, 
L. polyactis, and Collichthys niveatus Jordan et Starks, 
1906, and none of these three motifs were identified in the 
CD of Collichthys lucidus (Richardson, 1844) (Table 3).

The three motifs of freshwater drum were identical 
to those of Chrysochir aureus, and very similar to those 
of Argyrosomus amoyensis, Miichthys miiuy, Nibea 
albiflora (Richardson, 1846), Siniperca chuatsi (only 
1 bp difference), Bahaba taipingensis, and Atrobucca 
nibe (Jordan et Thompson, 1911) (2 bp difference). It is 
noteworthy that there was a significant rearrangement in the 
mitochondrial architecture of Johnius grypotus and Johnius 
belangerii (Cuvier, 1830) of Sciaenidae: the control region 
(D-Loop) was located between tRNA-Pro and tRNA-Leu 
genes, and the typical CSB-F and CSB-E sequences were 
not found. There was a 10 bp difference in the CSB-D 
sequence between freshwater drum and J. grypotus, and the 
CSB-D was not recognized in J. belangerii. 
Conserved sequence block (CSB). Within the 
CSB region, associated with the initiation of mitochondrial 
DNA replication (Cheng et al. 2012), we identified three 
motifs (CSB-1, CSB-2, and CSB-3) via the comparison 
with CSB sequences of related species (Table 4). Among 
the studied Sciaenidae species, all three motifs were 
identified in all species, except for Johnius grypotus, where 
CSB-2 and CSB-3 motifs could not be identified. With the 
exception of Acanthopagrus schlegelii, the structure of the 
CSB-2 motif was conserved: TAAA or TAGA, followed 
by two symmetrical C-base tandem repeats of 6–8 bp 
separated by a TA interval (see Table 4). The freshwater 
drum shared an identical CSB-2 motif with Argyrosomus 
amoyensis, Dendrophysa russelii (Cuvier, 1829), 
Atrobucca nibe, Hapalogenys nigripinnis (Temminck et 
Schlegel, 1843) (the valid name of the GenBank entry 
NC_014404: H. nitens) and Siniperca chuatsi. CSB-1 and 
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Table 2 
Organization and features of the mitochondrial genome of Aplodinotus grunniens 

Gene
Position Size 

[bp]
Codon

Anti-codon Strand IGR
Start End Start Stop

tRNA-Phe 1 68 68 TTC +
12S 69 1020 952 +
tRNA-Val 1021 1092 72 GTA +
16S 1093 2790 1698 +
tRNA-Leu 2791 2864 74 TTA +
nad1 2865 3839 975 ATG TAA +
tRNA-Ile 3844 3913 70 ATC + 4
tRNA-Gln 3913 3983 71 CAA – –1
tRNA-Met 3983 4051 69 ATG + –1
nad2 4052 5098 1047 ATG TAA +
tRNA-Trp 5098 5168 71 TGA + –1
tRNA-Ala 5170 5238 69 GCA – 1
tRNA-Asn 5242 5314 73 AAC – 3
tRNA-Cys 5351 5416 66 TGC – 36
tRNA-Tyr 5417 5486 70 TAC –
cox1 5488 7044 1557 ATG AGA + 1
tRNA-Ser 7040 7110 71 TCA – –5
tRNA-Asp 7114 7182 69 GAC + 3
cox2 7190 7880 691 ATG T + 7
tRNA-Lys 7881 7955 75 AAA +
atp8 7957 8124 168 ATG TAA + 1
atp6 8115 8798 684 ATG TAA + –10
cox3 8798 9583 786 ATG TAA + –1
tRNA-Gly 9583 9653 71 GGA + –1
nad3 9654 10004 351 ATG TAG +
tRNA-Arg 10003 10071 69 CGA + –2
nad4L 10072 10368 297 ATG TAA +
nad4 10362 11742 1381 ATG T + –7
tRNA-His 11743 11811 69 CAC +
tRNA-Ser 11812 11879 68 AGC +
tRNA-Leu 11885 11957 73 CTA + 5
nad5 11958 13796 1839 ATG TAG +
nad6 13793 14314 522 ATG TAG – –4
tRNA-Glu 14315 14383 69 GAA –
CYTB 14388 15528 1141 ATG T + 4
tRNA-Thr 15529 15600 72 ACA +
tRNA-Pro 15601 15670 70 CCA –
D-Loop 15671 16487 817

IGR = intergenic region, where negative numbers indicate overlaps.

CSB-3 motifs were comparatively variable, with Bahaba 
taipingensis exhibiting the highest similarity: an identical 
CSB-3, and a three-bp difference in the CSB-1 sequence. 
Phylogenetic analysis and gene order. The mt genome of 
freshwater drum did not exhibit any gene rearrangements 
compared to the mt genomes of the majority of sciaenid 

species: apart from the six species belonging to the genus 
Johnius, the gene orders of mitochondrial genomes of the 
other 22 species were identical (Fig. 2). Mitochondrial 
genomes of the six Johnius species showed different degrees 
of tRNA rearrangement (and duplication) in the cyb-nad1 
box: a duplication and transposition of trnP and trnF in 
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Johnius amblycephalus (Bleeker, 1855); a duplication and 
transposition of trnF and a transposition of trnP in Johnius 
distinctus (Tanaka, 1916); a duplication and transposition 
of trnF and a transposition of trnV in Johnius carouna 
(Cuvier, 1830); a duplication and transposition of trnL2 and 
the loss of trnF (assuming the loss is not an annotation 
artefact) in J. grypotus; a transposition of trnF and trnV in 
J. belangerii; and a duplication and transposition of trnV in 
Johnius trewavasae Sasaki, 1992. The unique gene order 
of this genus was reported before, which led the authors to 
propose that Johnius is the most ancient genus within the 
family Sciaenidae (see Xu et al. 2015).

A phylogenetic tree was reconstructed using all 13 
mitochondrial PCGs of 28 available species of the family 
Sciaenidae, with three species from three other percomorph 
families (Percichthyidae, Sparidae, and Haemulidae) 
used as outgroups. All four analyses (2 datasets × two 
algorithms -BI and ML) produced identical topologies of 
the Sciaenidae (Fig. 2), with only a minor rearrangement 
in the topology of two outgroup species (Hapalogenys 
nigripinnis and Siniperca chuatsi) between the amino 
acid dataset and nucleotide dataset. Although the overall 
topology of the phylogram was generally congruent with 
results of previous, both morphology and molecular data-
based, studies (Zhu et al. 1963, Ma et al. 2012, Sun et al. 
2017), several features deserve to be discussed in more 
detail. Traditional morphology-based division of the 
family Sciaenidae into subfamilies (Zhu et al. 1963, Sasaki 
1989) has been questioned by many subsequent molecular 
data-based studies, and a recent combined mitonuclear 

dataset-based study proposed a general subdivision into 
11 lineages (Lo et al. 2015). In that study, Aplodinotus was 
assigned to a separate lineage, which clustered at the base 
of the largest Sciaenidae clade, comprised of 22 genera, 
provisionally named Lineage 11. Although our results 
appear to imply that freshwater drum is the sister-group to 
all other Sciaenidae species, this is merely a consequence 
of poor availability of sciaenid mitogenomes belonging 
to different lineages; apart from Sciaenops ocellatus and 
A. grunniens, all species included in our dataset belong 
to the Lineage 11. In comparison to the results of Lo et 
al. (2015), our topology differs only in the position of 
S. ocellatus, which clustered with other species belonging 
to the Lineage 11. Along with Micropogonias, this genus 
was nominally assigned to Lineage 1 by Lo et al. However, 
it is not unlikely that this is an artefact caused by a limited 
availability of sciaenid mt genomes, so this result should 
be confirmed by an analysis comprising mitogenomes 
of all lineages before any conclusions can be made with 
confidence. 

Among other notable observations, the genus Nibea 
was rendered paraphyletic by Chrysochir aureus clustering 
within the Nibea clade. In the traditional morphological 
taxonomic system, Nibea and Argyrosomus genera were 
classified as the subfamily Argyrosominae (see Zhu et al. 
1963), but this was later rejected (Meng et al. 2004, Lo et al. 
2015, 2017). The taxonomic position of Chrysochir aureus 
has long been controversial: Zhu et al. (1963) classified it into 
the genus Nibea, then later it was reassigned to Chrysochir 
(subfamily Otolithesinae) (see Cheng and Zheng 1987, 
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Sasaki 1989), but a more recent study proposed that it may 
belong to the genus Otolithoides (subfamily Bahabinae) 
(see Zhang et al. 2010). Although our results support the 
original taxonomic system proposed by Zhu et al. (1963), 
other recent studies do not support it (Lo et al. 2015, 2017). 
This made us suspect that this specimen may have been 
misidentified. There is no description of the identification 
of specimen in the original paper (Wang et al. 2017), 
and BOLD database (Ratnasingham and Hebert 2007) 
identification produced ambiguous results (“species level 
match could not be made, the queried specimen is likely to 
be one of the following: Chrysochir aureus, Nibea coibor, 
Nibea sp. WJC-2017, Nibea chui”). As both C. aureus hits in 
BOLD database are to this same mitogenome (additionally, 
the fact that the species name is misspelled in the title of, 
and throughout, the published paper also does not boost our 
confidence in proper identification of this species), we urge 
resequencing of the mitogenome of C. aureus, and ideally 
other species from this genus. 

Larimichthys and Collichthys species clustered within 
a single clade, the topology of which indicated that 
they belong to a single genus. Another mitochondrial 
phylogenomic analysis produced a congruent topology 
(Cheng et al. 2012), but a combined mitonuclear dataset 
(cox1 + rag-1) resolved the two genera as very closely 
related, but monophyletic (Lo et al. 2015, 2017). Although 
this could also be an artefact caused by a misidentified 
fish specimen, as both of these latter studies used a small 
number of species belonging to these two genera (only one 
Collichthys species in Lo et al. 2015), the phylogenetics 
of these two genera should be studied in detail using a 
dataset containing all recognized species and a sufficiently 
high-resolution marker. 

Finally, our topology is in disagreement with the gene 
order-based hypothesis, outlined at the beginning of this 
section, that Johnius is the most ancient genus within 
this family (Xu et al. 2015). Molecular data are rather 
consistent in resolving this genus as the most derived 
sciaenid clade (Lo et al. 2015, 2017), which suggests 
exactly the opposite, that Johnius may be one of the 
youngest genera in this family. However, as species in the 
Johnius clade underwent an inversion of the control region 
(Fonseca et al. 2014), it is very likely that this inversion 
is the underlying cause for the unique base composition 
of the Johnius clade mitogenomes compared to other 
Sciaenidae (see Reyes et al. 1998, Hassanin et al. 2005, 
Fonseca et al. 2014). As mitochondrial architecture-driven 
mutational pressures can produce phylogenetic artefacts 
(Hassanin 2006, Zhang et al. 2019), the exact position of 
this genus within the Sciaenidae should be evaluated using 
nuclear (or combined morphonuclear) markers. 

CONCLUSIONS
We characterised the mitochondrial genome of 

Aplodinotus grunniens, especially the elements in its 
control region. The mitochondrial control region is 
generally the fastest-evolving part of the mitochondrial 
genome in vertebrates (Lee et al. 1995), so it is very 
useful for aquaculture purposes and population-level 

studies, as it can be used to identify interspecies hybrids 
(Guo et al. 2003), and even different populations within 
a species (Wilkinson and Chapman 1991, McMillen-
Jackson and Bert 2004). Although it is not without 
limitations, mitochondrial DNA has played a tremendously 
important role in our understanding of the diversity and 
interrelatedness of all life on earth (Rubinoff and Holland 
2005). As we obtained a perfectly stable sciaenid topology 
using different algorithms and datasets, this is an indication 
that mitogenomes may be a suitable tool to establish 
a reliable phylogenetic framework for the Sciaenidae. 
However, as nuclear and mitogenomic data can produce 
different phylogenetic signals (Rubinoff and Holland 
2005, Zhang et al. 2019), future studies should also test the 
signal from nuclear molecular data. We, therefore, urge the 
sequencing of additional sciaenid mt genomes, particularly 
those belonging to non-represented sciaenid lineages (Lo et 
al. 2015), to facilitate further progress in our understanding 
of the phylogeny and taxonomy of this fish family. 
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