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Background. The bogue, Boops boops (Linnaeus, 1758), is the most common sparid fish in the Tunisian waters. 
Despite its economic importance, the stock discrimination of this species is poorly understood up to date. As the 
otolith shape has long been known to be species-specific and recent studies have shown its value as an indicator 
of stock identity, the presently reported study was carried out for the first time to investigate the discrimination of 
the stock structure of B. boops samples collected from two sampling sites at the marine stations of Monastir and 
Zarzis located in Tunisia using the otolith shape descriptors analysis.
Materials and methods. A total of 183 adult samples of B. boops were collected between January and August 2019 
from two sampling sites at the Monastir and Zarzis marine stations. The outlines of sagittal otolith pairs from fish 
samples collected from the two sites were digitized and analyzed for shape variation by elliptical Fourier analysis (EFA).
Results. Discriminant Function Analysis (DFA) showed statistically significant differences in otolith shape within 
and between fish samples in the two sites, i.e., there was an asymmetry. This asymmetry was found between the 
left and right otoliths within each site, as well as between the same sides (left–left) and (right–right) otoliths 
between the Monastir and Zarzis stations.
Conclusion. Fish stock samples at the two stations represent two groups or populations of the Tunisian bogue 
stock and should be managed separately. In addition, the asymmetry in the otolith shape between fish samples 
from the two stations can be attributed to differences in the rate of growth resulting from local environmental 
factors such as water temperature, salinity, habitat, and diet. However, the inter-individual or even the intra-
population asymmetry between the right and left otoliths can be explained by the possibility of having intra-
individual stress that led to abnormalities in the development of the individuals or by the presence of poor living 
conditions for the larvae, resulting from unfavorable environments.
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INTRODUCTION
The bogue, Boops boops (Linnaeus, 1758), is the 

commercially important sea bream and the most dominant 
species in the Sparidae family (Layachi et al. 2015). 
This species has a wide geographical distribution that 
extends from the eastern Atlantic Ocean to the Black and 
Mediterranean Seas, including Tunisian waters (Amira 
et al. 2019). In addition, this species is demersal, as well 
as semi-pelagic, gregarious, and lives on all types of the 
bottom substrata, including mud, rock, sand, and seagrass 

beds (Simsek et al. 2018). However, it is commonly found 
at depths between 50 and 350 m and in coastal waters, 
it sometimes moves in aggregations, ascending mainly to 
the surface at night (Ider et al. 2017). Pollard et al. (2014) 
mentioned that B. boops grows rapidly in length during 
the first year of life, where it reaches 53.49% of its final 
length of growth and can live up to seven years. However, 
Khemiri et al. (2005) determined that the sexual maturity 
of B. boops can be reached between one and three years 
of age at a length of about 15.2 cm. In Egypt, Azab et al. 
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(2019) stated that its total length ranged from 9.3 to 23 cm 
and the total weight varied between 7.4 and 133.1 g, while 
the length–weight relation revealed a tendency towards 
isometric growth. They also said that its longevity is 4 
years and the length at first capture and maturity is 12.5 
and 13.2 cm, respectively, while the total mortality rate is 
2.26% y–1 . Along the Mediterranean coast in Benghazi, 
El-Maremie, and El-Mor (2015) reported that it feeds on a 
wide range of prey species, including Crustacea, Porifera, 
Coelenterata, Seagrasses, Mollusca, and Protozoa, while 
along the Algerian coast, it is omnivorous and feeds on 
benthic (Crustacea, Mollusca, Annelida, Sipuncula, 
Plantae) and pelagic preys (Siphonophorae, Copepoda, 
eggs) (Derbal and Kara 2008). Jawad (2003) analyzed 
the asymmetry in some bilateral characters of samples 
collected from coastal waters near Benghazi City, Libya, 
and found the highest level of asymmetry in the post-
orbital length character, while he observed the lowest 
level in the eye lens diameter and weight. Also, Ider et 
al. (2017) analyzed the variability of otolith shape in 
three populations of B. boops collected from the Algerian 
coast and observed a significant difference between 
the left and right otoliths and added that the shape is 
influenced by the fish length and the sampling location, 
but it is not related to sex and age. In addition, Ferri et al. 
(2018) studied the variability of the otolith morphology 
and morphometry in six juvenile specimens collected 
from the eastern coastal Adriatic region and recorded 
variations in the sagittae shape, margins, and anterior 
region among the studied juveniles. Moreover, Mahé et 
al. (2019) analyzed the directional bilateral asymmetry 
of otoliths in specimens collected from 11 geographical 
regions from the Canary Islands to the Aegean Sea using 
elliptical Fourier descriptors and found a significant otolith 
bilateral asymmetry at the global scale and non-significant 
asymmetry at the scale of sampling locations.

In Tunisian waters, however, Anato and Ktari (1986) 
studied the age and growth of the B. boops using otolith and 
scale reading and found that the age of first sexual maturity 
is between the thirteenth and fifteenth months after birth and 
the linear growth and weight of females slightly increase 
over males during the first four years of life. Similarly, 
Khemiri et al. (2005) determined the age and growth in 
four areas along the Tunisian coast by studying signs of 
growth in cross-sections of otoliths and reported that the 
hyaline zone deposits annually from November to April and 
that the increases in length and age fit the von Bertalanffy 
equations. Additionally, Cherif et al. (2008) analyzed the 
length–weight relation of individuals in the Gulf of Tunis 
and found a high degree of a positive correlation between 
total length and total weight. Moreover, the infection of the 
gallbladder of B. boops by Ceratomyxa ghannouchensis 
and C. pallida parasites has been confirmed in the Gulf of 
Gabes by Thabet et al. (2019).

Otoliths are calcified structures found in the inner ear 
cavity of all teleost fish and functionally serve as a balance 
organ and also aid in hearing. Both the left and right inner 
ear contain three pairs of otoliths. These otoliths grow 
throughout the life of the fish and, unlike scales and bones, 

are metabolically inert, i.e., once deposited, otolith material 
is unlikely to be resorbed or altered (Campana 1999). 
Consequently, otolith shape remains unaffected by short 
term changes in fish condition or environmental variations 
(Campana and Casselman 1993). Recent studies have shown 
that the saccular otoliths (sagittae) display high specific inter- 
and intra-variability in shape and size (Ferri et al. 2018). Thus, 
they have been widely used as an effective tool to identify 
fish species and populations and to discriminate their stocks 
in different habitats (Jawad et al. 2018). In addition, the role 
of the otolith approach has also been expanded to include 
ecological research and conservation applications (Miller 
et al. 2010), ontogenetic processes (Capoccioni et al. 2011), 
spatial and temporal migrations (Smith and Kwak 2014), and 
fish age (Škeljo et al. 2015), which has powerful implications 
for fisheries science and management (Vasconcelos et al. 
2018). Besides, the anatomy of the otolith has been shown 
to play an important role in discriminating the stock based on 
the life traits of individuals with the evolution of the habitat 
(Arai et al. 2007). Studies of morphological variability in 
the otolith shape, structure, and development have shown 
that the otolith shape is species-specific and is influenced by 
ontogenetic, genetic, and environmental factors (Fashandi et 
al. 2019), as well as by sex, growth, maturity, and pattern 
of fishery exploitation (Begg and Brown 2000), or by 
individual characteristics, e.g., the individual genotype 
(Jawad et al. 2020) or the physiological state (Campana and 
Neilson 1985). But the possible cause of the intra-individual 
variation, particularly the asymmetry in shape between the 
right and left otoliths, has been poorly studied (Mille et al. 
2015). Under normal conditions, the three orthogonal semi-
circular otoliths at both sides of the head are morphologically 
symmetrical (Panfili et al. 2002), although there are some 
inter-specific modifications in the size and shape (Popper and 
Lu 2000) but the weight difference, i.e., mass asymmetry, 
between masses of the left and right otoliths has been also 
observed (Yedier et al. 2018).

Indeed, the external contour or shape of the otoliths 
has been studied by using several techniques, including 
univariate descriptors such as shape factors that include 
roundness or circularity (Tuset et al. 2003), geometric 
morphometrics (Vergara-Solana et al. 2013), wavelet 
functions (Ferri et al. 2018), growth markers (Benzinou 
et al. 2013), curvature scale space (Mapp et al. 2017), 
and geodesic methods (Benzinou et al. 2013). Although, 
the elliptical Fourier analysis (EFA) remains the most 
widely used method for describing and characterizing 
outlines, capturing outline information efficiently in a 
quantifiable manner has been widely used to describe the 
variation of the otolith shape between fish species in stock 
discrimination and analysis of population structure of 
diverse species (Mahé et al. 2019).

Up to now, some studies have been conducted on the 
otolith shape variability in some Tunisian sparid species 
such as Diplodus annularis (Linnaeus, 1758) (see Trojette 
et al. 2015) and Pagellus erythrinus (Linnaeus, 1758) (see 
Mejri et al. 2018) cohabiting different habitats. However, no 
studies have been carried out on the bogue, B. boops. Thus, 
the presently reported study was carried out for the first time 
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to investigate the discrimination of the stock structure of 
B. boops samples collected from two sampling sites at the 
marine stations of Monastir and Zarzis located in northern 
Tunisia using the otolith shape descriptors analysis.

MATERIALS AND METHODS
Sampling. As the first sexual maturity of Boops boops 
starts at a total length (TL) of about 138 to 152 mm (Bottari 
et al. 2014), a total of 183 adult specimens of this fish with 
a TL ranging from 150 to 206 mm were used for this study. 
Fish samples were caught alive between January and August 
2019 from the Monastir (35°46′40″N, 10°49′34″E) and 
Zarzis (33°30′14″N, 11°06′43″E) marine stations in Tunisia 
(Fig. 1) by gillnets using coastal boats ranging from 
5 to 13 m in length. The geographical positions of the 
sampling locations at the Monastir and Zarzis stations 
were determined with the global positioning system 
(GPS) with coordinates 35°48′27″N, 10°52′28″E and 
33°31′37″N, 11°14′13″E, respectively. Immediately after 
capture, the status of sexual maturity was checked for each 
sample, TL was measured with an ichthyometer, and total 
weight (TW) was recorded and the values from the last 
two parameters were rounded to the nearest 0.01 mm and 
0.1 g, respectively (Table 1).
Otolith extraction. The sagittal left and right otoliths 
from all fish samples were removed, washed with distilled 
water, stored in Eppendorf tubes, and kept in a dry storage 
for 24 h to eliminate humidity. 

Otolith shape analysis. Otoliths were positioned onto 
a microscope slide with the sulcus faced down and the 
rostrum pointed in the same direction to minimize distortion 
errors in the normalization process. Subsequently, they 
were examined under a dissecting microscope at 40× 
magnification with a black background and photographed 
by using a digital camera (Samsung HD with a resolution of 
16 megapixels). The photos of all otoliths were exanimated 
by Adobe Photoshop CS6. The contour shape of each 
otolith (Fig. 2) was assessed by the elliptic Fourier analysis 
(FDA). The method of elliptic Fourier descriptors (FDs) 
was used following the procedures suggested by Kuhl and 
Giardina (1982), where a chain-coding algorithm, based 
on the projection of the binary contour of each otolith 
was used, and calculated with SHAPE Ver. 1.3 software 
(Iwata and Ukai 2002). The chain coder provides the 
normalized EFDs coefficients through a discrete Fourier 
transformation (DFT) of the chain-coded contour. The 
FDs technique describes the outline based on harmonics 
and generates 20 harmonics for each otolith. Each 
harmonic was composed of four coefficients (A, B, C, and 
D), resulting in 80 coefficients per otolith generated from 
the projection of each point of the outline on axes (x) 
and (y). The higher number of harmonics, the greater the 
accuracy of the outline description (Kuhl and Giardina 
1982). Each otolith was normalized by the program for size 
and orientation, which caused the degeneration of the first 
three FDs derived from the first harmonic to fixed values 
A1 = 1, B1 = 1, and C1 = 0. Therefore, each sample was 
represented by 77 coefficients for the shape analysis. The 
four Fourier coefficients (A, B, C, and D) calculated the 
Fourier power (FPn), the percentage Fourier power (FP%), 
and the cumulative percentage of the Fourier power (FPn% 
cumulative). The respective formulas were

FPn = (A2
n + B2

n + C2
n + D2

n) · 2
–1

where An, Bn, Cn, and Dn are the Fourier coefficients of the 
nth harmonic.

FP% = 100FPn · (Ʃ1
nPFn)

–1

FPn% = Ʃ1
nFPn%

Fig. 2. Photograph of the otoliths of Boops boops collected 
from the Monastir and Zarzis marine stations in Tunisia; 
(A) real image; (B) processed image using Adobe 
Photoshop software

Fig. 1. Sampling sites from which samples of Boops boops 
were collected in the Monastir and Zarzis marine 
stations, Tunisia

Table 1
Range values of the total length and weight of the Boops 
boops samples collected from the Monastir and Zarzis in 

Tunisia

Sampling site n
Parameter

TL [mm] TW [g]
Monastir 91 150–206 28–78
Zarzis 92 157–198 36–70

n = number of fish, TL = total length, TW = total weight.
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The power of the cumulative Fourier average was then 
calculated to fix the number of harmonics. The threshold 
of 99.99% of the total power was chosen to determine the 
number of harmonics required.
Data analysis. The analytical design was built to detect 
differences in the contour shape of B. boops otoliths 
collected from the two studied locations through the non-
parametric generalized Discriminant Function Analysis 
(DFA). First, the effect of locations on elliptical Fourier 
descriptors was tested by multivariate analysis of variance 
(MANOVA). Second, all shape variable values were 
firstly checked for normality; if the values do not follow 
the normal distribution, a transformation of Box–Cox 
(Box and Cox 1964) was carried out. Finally, the Levene’s 
and Shapiro–Wilks’ λ tests were applied to assess the 
homogeneity (equality) and the normality of the variance 
in the variable values of otoliths shapes, respectively. The 
DFA was performed with the normalized elliptical Fourier 
descriptors coefficients (77 coefficients per otolith) to 
illustrate the similarity and difference between samples 
either in the same locality and/or in the two localities. 
The objective of DFA was to investigate the integrity of 
predefined groups of individuals belonging to a given 
geographical location by finding linear combinations of 
descriptors that maximize the Wilks’ λ. The Wilks’ λ test 
assesses the performance of the discriminant analyses. 
This statistic is the ratio between the intra-group variance 
and the total variance and provides an objective means 
of calculating the chance–corrected percentage of 
agreement. The Mahalanobis generalized distance (D2) 
and Fisher distance were also calculated to characterize 
the differences in the otolith shape between and within 
stock samples of the two localities. All these statistical 
analyses were performed using XLSTAT 2010.

RESULTS
The Levene’s and Wilks’ λ tests confirmed that all 

values of the shape variance were equally and normally 
distributed with P-value > 0.05. In addition, the Wilks’ λ 
test values showed statistically significant differences (P < 
0.0001) between the right and left otoliths of the Monastir 
and Zarzis localities, i.e., there was an asymmetry (Table 
2). Similarly, the Mahalanobis (D2) and Fisher distances 
also showed significant asymmetry in the otoliths shape 
within and between fish samples in the two localities. 
In detail, the D2 between the left and right otoliths of fish 
samples within the Monastir locality was 3.90, while that 
of Zarzis was 3.06. However, the D2 between the left and 
right otoliths of fish samples from the Monastir and Zarzis 
localities were 6.36 and 5.48, respectively (Table 3), 
whereas the Fisher distances were 1.82 (P < 0.0001) and 
1.4 (P = 0.01), respectively. Nevertheless, by comparing 
the left and right sides of otoliths between fish samples of 
the two localities, it was found that the Fisher distances 
were 2.98 and 2.57 (P < 0.0001 for both), respectively 
(Table 4).

The barycenter projection showed that the two 
localities were discriminated against by the two axes 
F1 (59.94%) and F2 (29.47%) with a total value equal to 

89.41%. Indeed, the F1 and F2 showed the presence of 
two otoliths groups corresponding to two populations of 
fish samples from the Monastir and Zarzis localities. The 
F1 axis placed the left and right otoliths of the Monastir 
fish samples in the positive part and those of the Zarzis 
in the negative part, however, the F2 axis separated the 
left and right otoliths within fish samples of each locality. 
In addition, the left otoliths were placed in the positive 
part, whereas the right ones were positioned in the negative 
part of the F2 (Fig. 3).

Table 2
Wilks’ Lambda test between Boops boops, from Monastir 

and Zarzis localities, Tunisia (Rao approximation)

Parameter Value
Lambda 0.2209

F (Observed value) 2.4328
F (Critical value) 1.1826

DDL1 231
DDL2 859

P–value < 0.0001
Alpha 0.05

Table3
Pairwise Mahalanobis Distances (D2) matrix of the otoliths 

shape variance between Boops boops samples collected 
from the Monastir and Zarzis localities in Tunisia

 ML MR ZL ZR
ML — 3.9025 6.3672 6.9938
MR — 7.3307 5.4876
ZL — 3.0680
ZR —

ML = Monastir left, MR = Monastir right, ZL = Zarzis left, ZR = 
Zarzis right.

Table 4
Fisher distance matrix between the left (L) and right 

(R) otoliths of Boops boops samples collected from the 
Monastir and Zarzis localities in Tunisia  

(above diagonal) and the P-values (below diagonal)

ML MR ZL ZR
ML — 1.8219 2.9888 3.2829
MR 0.0002 — 3.4410 2.5759
ZL <0.0001 <0.0001 — 1.4480
ZR <0.0001 <0.0001 0.0161 —

ML = Monastir left, MR = Monastir right, ZL = Zarzis left, ZR = 
Zarzis right.

DISCUSSION
Elliptic Fourier analysis of the otolith contour shape 

revealed a clear asymmetry between the left and right sides 
within and between the fish samples in the two localities. 
These results are consistent with those previously cited 
on the sparid Oblada melanura (Linnaeus, 1758) (see 
Barhoumi et al. 2018), Diplodus annularis (see Trojette et 
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al. 2015), and Pagellus erythrinus (see Mejri et al. 2018, 
2020), which are cohabiting different habitats in Tunisian 
waters, as well as on the B. boops sampled from three 
locations along the Algerian coast (Ider et al. 2017) and 
from the Gulf of Tunis (Mahé et al. 2019). Similarly, the 
asymmetry of the otolith shape has also been found in other 
species that live elsewhere outside of Tunisian waters, 
such as Gadus morhua Linnaeus, 1758 (see Campana and 
Casselman 1993, Hüssy et al. 2016), Clupea harengus 
Linnaeus, 1758 (see Turan 2000), Lophius piscatorius 
Linnaeus, 1758 (see Cañás et al. 2012), Haemulon 
plumierii (Lacepède, 1801) (see Treinen-Crespo et al. 
2012), Sicyopterus species (Lord et al. 2012), Xiphias 
gladius Linnaeus, 1758 (see Mahé et al. 2016), Thunnus 
thynnus (Linnaeus, 1758) (see Brophy et al. 2016), 
Albatrossia pectoralis (Gilbert, 1892) (see Rodgveller et 
al. 2017), Pegusa lascaris (Risso, 1810) (see Chakour and 
Elouizgani 2018), and Engraulis encrasicolus (Linnaeus, 
1758) (see Khemiri et al. 2018).

Additionally, statistical analyses showed a significant 
difference in the sagittal otolith shape between fish 
samples in the Monastir and Zarzis locations, and they 
clearly separated them. This result is in agreement with 
what has been recorded in some sparid fish from marine 
environments in Tunisian waters such as P. erythrinus that 
has been examined from the Bizerte, Goulette, Soliman, 
and Haouaria stations in the Gulf of Tunis (Mejri et al. 
2020) and the Oblada melanura collected from fishing 
zones in the Bizerte, Kelibia, and Sayada along the 
Tunisian coast (Barhoumi et al. 2018). Although the 
morphological variability in the otolith shape is influenced 
by genetic factors (Vignon and Morat 2010), exogenous 
factors such as depth (Lombarte and Lleonart 1993), 

water temperature (Hüssy 2008), salinity (Capoccioni et 
al. 2011), and food supply (Hüssy 2008) also play a strong 
role in the otolith reshape (Bremm and Schulz 2014). 
Therefore, this morphological asymmetry between the 
left and right otoliths in fish samples from the Monastir 
and Zarzis stations can be attributed either to the effect of 
the surrounding environment during their lifetime or to a 
decrease in some factors such as fertility, sexual maturity, 
survival, or growth (Trojette et al. 2015). In addition, as 
described by Panfili et al. (2005) and Mahé et al. (2019), 
the B. boops samples from these two stations may have 
been subjected to different environmental conditions 
such as temperature and salinity, which may have 
increased levels of asymmetry in the shape of otoliths. 
These environmental parameters have also explained 
the diversity of the shape of the otoliths that have been 
detected in the sparid fish that live in Tunisian waters such 
as D. annularis (see Trojette et al. 2015) and P. erythrinus 
(see Mejri et al. 2018, 2020).

In this study, the difference in the otolith shape 
between the same left–left and right–right sides of fish 
samples from the Monastir and Zarzis localities can be 
explained by some factors such as fluctuations in the diet, 
type of swimming activity, life-history traits, and variation 
in some environmental conditions such as salinity and 
water temperature. However, some authors have attributed 
this asymmetry to genetic effects, but this factor cannot be 
discussed here due to a lack of genetic data on B. boops 
from these two stations. On the other hand, previous studies 
on the size and morphology of the otoliths have shown 
that the intra-population variation may reside in inter- 
and intra-individual and even inter-population variations 
(Mejri et al. 2018, 2020). Of these variations, Panfili et 

Fig. 3. Samples dispersion of the left and right otoliths of Boops boops collected from the Monastir and Zarzis marine 
stations in Tunisia; ML = Monastir left, MR = Monastir right, ZL = Zarzis left, ZR = Zarzis right
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al. (2005) pointed out that the intra-individual variation 
represents the fluctuating asymmetry of the otoliths. 
In fact, differences in habitats between the Monastir 
and Zarzis locations, particularly water temperature and 
salinity, can affect the different structures of saccular 
sagittae. Moreover, many authors have attributed this 
difference to the type of substrate which may be either 
a soft, mixed, or hard substrate and the habitat occupied 
by the fish (Jaramillo et al. 2014). These two parameters 
can also be considered herein as key factors supporting the 
current result of otolith asymmetry between the Monastir 
and Zarzis localities, where significant differences in 
substrates and habitats have previously been recognized 
in these two distant stations (Mejri et al. 2018). Therefore, 
environmental parameters such as water temperature, 
salinity, depth, and feeding have been identified as the 
crucial causes of geographic variation in the shape or 
appearance of the otolith nucleus, otolith annuli, and 
variations in the ration of the otolith size to the fish size 
(Trojette et al. 2015). However, as found herein, the 
elliptic Fourier analysis can also discriminate between 
stocks of B. boops in Tunisian waters.

Regarding environmental parameters, Fablet et al. 
(2009) mentioned that temperature indirectly affects 
otolith growth. Indeed, fish species have been known to 
be very sensitive to a change of only 0.03°C (Trojette 
et al. 2015). In the presently reported study, the water 
temperature varied from 19.6 to 25.8°C in the Monastir 
(Zaafrane et al. 2019) and from 15.6 to 28.3°C in the Zarzis 
(Béjaoui et al. 2019). In addition to these environmental 
factors, some authors have claimed that ontogenetic 
factors (Gonzalez Naya et al. 2012), physiological factors, 
where hearing capabilities have been associated with a 
specialization in acoustic communication, (Lomabrte and 
Cruz 2007), and phylogeny of fish (Nolf and Tyler 2006), 
can also affect the shape of the otolith. In addition, it has 
been documented that salinity has been one of the key 
factors directly affecting the connectivity of species in 
marine populations and indirectly affecting the chemical 
composition and shape of the otoliths (Mejri et al. 2020). 
Moreover, it is worth noting that many authors have 
observed a marked difference in the chemical composition 
of the otoliths, which has been associated with individuals’ 
responses to salinity and water temperature interaction and 
concentrations of the most common elements such as Cl, 
Mg, K, Na, and Ca (Mejri et al. 2018). This explanation 
is likely to support the presently reported result of otolith 
asymmetry between fish samples in the Monastir and 
Zarzis localities because the salinity varies between 37‰ 
in the Monastir (Zaafrane et al. 2019) and 39.5‰ in the 
Zarzis (Béjaoui et al. 2019). Moreover, the availability of 
food can change the behavior and morphology of fish, as 
well as the variability between metabolic rates, which have 
been linked to the environmental parameters, can affect 
the shape and growth of sagittae (Lombarte et al. 2010). 
Indeed, the bogue, B. boops, feeds on a wide variety of 
prey types including Crustacea, Porifera, Coelenterata, 
Seagrasses Mollusca, and Protozoa (El-Maremie and El-
Mor 2015). Thus, we can conclude that the differences 

in the diet of B. boops seem likely to exist between the 
Monastir and Zazris locations that led to the current 
difference in the otolith shape between the fish samples 
from the two localities, a conclusion that needs further 
investigation. Furthermore, some authors have reported 
that age and sex may induce a significant difference in 
the otolith shape in fish stocks (Simoneau et al. 2000). 
As a result, Ferri et al. (2018) found that the otolith shape 
is significantly different in juveniles from that in adults 
due to differences in the hearing function. However, it is 
noteworthy to mention herein that the sampling was only 
restricted to adult samples of B. boops to eliminate the 
confounding effect of allometric growth on the otolith 
form (Mejri et al. 2020). With regard to sex, B. boops has 
been assigned as a protogynous hermaphrodite with a sex 
change from female to male (Gordo 1995). Therefore, we 
can suggest that the difference in the otolith shape between 
fish samples from the Monastir and Zarzis localities can 
be explained by the effect of the hermaphroditism of some 
samples from these two locations which can induce higher 
discrimination in otoliths.

On the other hand, reproductive isolation has been so 
far known to be one of the main characteristics that could 
indicate the differentiation among populations and fish 
stocks (Wiff et al. 2020). Thus, the isolation of B. boops in 
small reproductive units in combination with the exposure 
to the different environmental conditions in the two 
localities can act as natural barriers and key factors that 
could influence stock differentiation. However, genetic 
analyses will be required to estimate the level of gene 
flow and may preclude the detection of genetic differences 
between the Monastir and Zarzis localities.

In conclusion, the comparison of the otolith shape 
between the bogue, B. boops samples collected from the 
Monastir and Zarzis marine stations showed statistically 
significant differences within and between the fish stocks 
of the two localities, i.e., there was an asymmetry. This 
asymmetry was found between the left and right otoliths 
within each locality, as well as between the same sides 
(left–left) and (right–right) otoliths between the Monastir 
and Zarzis localities. Therefore, our study strongly confirms 
that fish samples from the two localities were significantly 
different from each other, i.e., they do not belong to a unique 
population, and results suggest that they might represent a 
structured population along the Tunisian coast. In addition, 
by analyzing the otolith shape, stock discrimination 
becomes easier and more efficient for B. boops in Tunisian 
waters. Moreover, this asymmetry in the otolith shape may 
be due to the effect of some environmental factors such as 
water temperature, salinity, habitat, and diet. However, the 
inter-individual or even the intra-population asymmetry 
between the right and left otoliths can be explained by 
the possibility of having intra-individual stress that led 
to abnormalities in the development of the individuals or 
by the presence of poor living conditions for the larvae, 
resulting from unfavorable environments. Furthermore, 
these two stations should be considered as two subunits 
or populations of the Tunisian bogue stock and should be 
managed separately. In the future, research into the otolith 
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biochemical analysis will allow us to understand better 
the further environmental physio-chemical parameters 
that affect the otolith morphology of the bogue at the two 
stations. Genetic investigations including mitochondrial 
DNA such D-loop region would also be necessary to 
understand better the presently reported results.
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