<u> PENSOFT</u>.

Fish communities in high-latitude mangrove in north-western Mexico

Juan Ángel PAYÁN-ALCACIO¹, Gustavo DE LA CRUZ-AGÜERO¹, Víctor Hugo CRUZ-ESCALONA¹, Rodrigo MONCAYO-ESTRADA¹

1 Instituto Politécnico Nacional, CICIMAR, Departamento de Pesquerías y Biología Marina, La Paz, Baja California Sur, Mexico

http://zoobank.org/09E5B611-928B-4DF8-AE26-A8DD6387729A

Corresponding author: Rodrigo Moncayo-Estrada (rmoncayo@ipn.mx)

Academic editor: Eva Decru + Received 13 May 2020 + Accepted 21 December 2020 + Published 31 March 2021

Citation: Payán-Alcacio JÁ, De La Cruz-Agüero G, Cruz-Escalona VH, Moncayo-Estrada R (2021) Fish communities in highlatitude mangrove in north-western Mexico. Acta Ichthyologica et Piscatoria 51(1): 1–11. https://doi.org/10.3897/aiep.51.63429

Abstract

Studying fish communities in extreme habitats is important to better understand the variation in their ranges under climatic scenarios or anthropogenic pressure. In particular, the mangroves in Baja California Sur occupy the northernmost distribution range under two extreme conditions (temperate waters and arid weather). In this context, the aim of the presently reported study was to analyze the functional characteristics of ichthyofauna in two localities, La Paz Bay (BP) and Almejas Bay (BA), which are also located in different ecoregions. For both bays, the composition and frequency values were compiled from monthly samples and the literature. Eleven functional traits were assessed from the morphology of every fish species. Functional indices (Richness, Evenness, Divergence, and Originality) were used to evaluate different aspects of the community structure. A total of 83 species were found at both sites, with 54 in BP and 50 in BA. In BP, six species were residents, eight were temporal visitors, and 36 were occasional visitors. In BA, six species were residents, 15 species were temporal visitors, and 33 were occasional visitors. At both sites, 12% of the species were permanent residents; BA had a higher percentage of temporal residents (27%), while BP had a higher percentage of occasional visitors (72%). The functional analysis detected communities with specialized traits, but in comparison to BP, BA had higher evenness in the community structure. Although greater structural complexity was expected in the community during the warm months, because of the increase in richness and attributes, BA had higher values during the cold months, which was probably because the area is a transition zone and the fish communities are adapted to colder climates. In comparison to BA, BP had higher originality values, and colder months presented higher values than warmer months. Although the mangrove sites had the same northernmost latitudinal limits and both had extreme conditions compared to those in mangroves in tropical environments, the fish communities differed in their composition, frequency, and functionality with more extreme functional traits in colder weather than in warmer weather.

Keywords

arid, frequency, functional attributes, functional diversity, temperate

Introduction

Mangrove fish communities are distributed worldwide (30°N–30°S) on sheltered tropical and subtropical coastlines (Ellison 2002). Due to the importance of these communities from economic, ecological, and social perspectives (Costanza et al. 1997), the number of studies has increased, especially in tropical distribution zones (Faunce and Serafy 2006). However, only a few studies have focused on higher latitudes around circumtropical boundaries (Quisthoudt et al. 2013). An analysis of habitats at latitudinal boundaries (which usually have extreme conditions) requires special attention (Ong et al. 2018), because environmental characteristics influence

Copyright Juan Ángel Payán-Alcacio et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

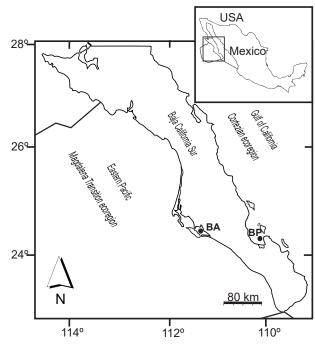
the distribution, physiology, and survival of marine populations. In addition, the migration of fishes from the tropics to higher latitudes has started to become more frequent (Tedesco et al. 2017; Ford and Roberts 2018), which indicates that the changes in the community dynamics of the newly invaded habitats need to be understood.

Two kinds of mangrove environments have been defined at higher latitudes according to habitat characteristics: (1) temperate mangroves, which tolerate low water temperatures, with an average of 20°C in the coldest month (water and weather temperature combined; Cavanaugh et al. 2014), and (2) arid mangroves, which are in areas with low rainfall (<300 mm \cdot year⁻¹), no riverine input, and high evaporation rates (Schaeffer-Novelli and Cintron-Molero 1993; Arreola-Lizárraga et al. 2004). Under both conditions, the trees are dwarfed with average heights of less than 3 m (Flores-Verdugo et al. 1993; Millán-Aguilar et al. 2019). In Baja California Sur (BCS), north-western Mexico, there are examples of mangroves that experience a combination of both conditions.

Although mangrove fish communities in BCS live under extreme weather conditions, few studies have been performed in this area. In this context, it is important to use the information available, which includes sampling performed at different time periods, and to implement the appropriate analytical tools to describe the characteristics of the community. In particular, functional ecological analyses have proven to be useful because they use species traits that are linked to ecosystem processes. These analyses focus on the difference between unique species characteristics (e.g., physiological, feeding, locomotion, and reproduction) and explain the functions performed by species in the environment from another perspective (Niche, Costa-Azevedo et al. 2017).

In the presently reported study, the main aim was to explore the arid and temperate mangrove fish communities and describe the functional aspects that may provide insights on broader ecological processes in high-latitude regions. We expected that the functional traits at the selected sites would be more specialized than those reported in tropical mangrove fish communities. However, based on the extreme weather conditions in BCS, the functional composition of the fish communities would likely be affected in a similar way (loss/gain of species) despite the original condition of the mangrove (arid/temperate) during the seasonal changes, as the temperature has been reported to guide local migration of fish to other near environments.

Methods


Study area

Two areas in the Baja California Peninsula, México, were selected: Bahía de La Paz (BP) and Bahía Almejas (BA). Both are strictly marine, without riverine inputs, and present arid and temperate environments (rainfall of 180 mm \cdot yr⁻¹ in BP and approximately 80 mm \cdot yr⁻¹ in BA with an evaporation rate of 1800 mm \cdot yr⁻¹), as-

pects that create close to hypersaline suboptimal conditions. As a consequence, dwarf mangrove forest trees are common, with a maximum height of approximately 3 m (González-Zamorano et al. 2013). In contrast, the sites belong to two separate ecoregions (sensu Spalding et al. 2007), which implies different oceanographic characteristics. BP is the largest protected bay on the eastern coast of the peninsula inside the Cortezian ecoregion (24°07'39"N and 24°21'41"N, and 110°17'23"W and 110°40'23"W), as it includes the Gulf of California. It is characterized by warm climates, upwelling systems, and high levels of primary productivity. BA is located in the southern part of Bahía Magdalena on the western coast of Baja California Sur inside the Magdalena Transition ecoregion (24°17'18"N and 24°20'51"N, and 111°20'30"W and 111°27'47"W), which is a transitional zone for cold and warm waters located below San Ignacio to the southernmost tip of Cabo San Lucas. This ecoregion has moderate productivity with higher picks in upwelling systems (Spalding et al. 2007; Wilkinson et al. 2010; Fig. 1).

Sampling and database

In BP, monthly trawling occurred at four sites (with a repetition on each, for a total of eight sampling events) from July 2010 to June 2011, and all events occurred at the same hour, with the highest possible reproducibility. The fishing device was an experimental seine net (a length of 50 m, depth of 2 m, and mesh size of 1 cm). The BA data were published by Rodríguez-Romero et al. (2011) from monthly sampling at ten sites (one sampling event per site) from October 1993 to September 1994 using an experimental shrimp seine net (6 m length, 4 m depth, and mesh size of 1 cm at the codend). BP identification

Figure 1. Sample sites location in the Baja California Peninsula. The two ecoregions are also represented in the map.

was carried out to the species level following the criteria of Fischer et al. (1995). All voucher specimens collected in BP were deposited in the Ichthyological Collection at CICIMAR, Instituto Politécnico Nacional, La Paz, BCS, Mexico. The list of species from Rodríguez-Romero et al. (2011) was reviewed using the FishBase *match name* tool (Froese and Pauly 2019). One species reported by Rodríguez-Romero et al. (2011) was detected out of its distribution range for *Sphoeroides angusticeps* (Jenyns, 1842); as a result, it was excluded from the analysis.

Frequency of the species

To identify the affinity and permanence time of the species in the environment, the percentage frequency throughout the year for each species was considered. The classification was modified from the proposal of Amezcua-Linares and Yáñez-Arancibia (1980): Resident species (frequency > 75%), Temporal visitors (75% > frequency > 25%), and Occasional visitor (frequency < 25%).

Functional diversity

One adult organism was selected to describe the morphology of the species, the photograph was taken following standard ichthyological guidelines, and the mouth of the organism was pointing to the left side with its fins extended. In the case where organisms were too damaged to follow this procedure, scientific photographs were gathered from available public web repositories such as FishBase (www.fishbase.org), Naturalista (www.naturalista.mx), and scientific fish collections (Ichthyological Collection of CICIMAR). Eleven body lengths were measured from the photographs using ImageJ software ver. 1.51j8 (Wayne Rasband, National Institutes of Health, Bethesda, MD, USA), and using these measures, proportions of the body were calculated describing nine functional traits (Table 1, modified from Toussaint et al. 2016). These functional traits were selected after a rigorous screening process from several potential descriptors (defining feeding and locomotion processes), and the correlation between the variables was considered to identify collinearity (cutoff variation inflation factor > 3; Zuur et al. 2010) as well as the explained variance in a PCA (which is not included here) to determine the traits that had relatively high explanatory power to describe the morpho-functional variation in the species.

Functional indices that could be calculated with the presence/absence of the species were selected, to avoid the introduction of bias in the community structure interpretation due to dominance aspects: Species abundance values could be related to external conditions (biotic and abiotic) present during the different years when the studies were carried out. Because abundance was not considered in the analysis, the interpretation of the functional indices was adjusted; instead of weighing the species by the number of individuals, each species was considered to have 1/S (Species) abundance (Villéger et al. 2008).

Attribute Formula Measures Maximum body height Body elongation Standard length Head length Body form Standard length Head height Body height Maximum body height Mouth position Oral gape position Head height Jaw length Mouth length Head length Eye diameter Eve size Head height Eve position Eye orientation Head height Pectoral fin length Pectoral fin size Standard length Pectoral fin insertion Pectoral fin position Maximum body height Caudal peduncle height Caudal penducle throttling Caudal fin height Caudal peduncle height Caudal penducle aspect Caudal peduncle length

Table 1. Formulas and description for calculating functional attributes.

The selected functional indices focused on four facets of functional diversity: functional richness (FRic), which is the functional space occupied by the species in the community represented by the multivariate set of 11 traits and, was calculated using a convex hull volume in an ordination space; functional evenness (FEve), which describes the regularity of the distribution of species in the functional space using a minimum spanning tree to be measured; functional divergence (FDiv), which describes how far highly frequent species are from the center (the median focus point that is at the same distance from each species) of the functional space (Villéger et al. 2008; Laliberté and Legendre 2010); and finally, functional originality (FOri), which describes how species modify redundancy between the species, where the lower the value, the closer species are together, and the larger the value, the more separated species tend to be from one another in the functional space (Mouillot et al. 2013). The indices were calculated with the multidimFD package (Villéger 2017). Due to low sample sizes for some months (extreme cold and warm water temperature), the indices FEve and FDiv could not be calculated in BP in December, January, February, and July.

Results

Fish community

A total of 83 species were recorded in this study: 54 were in Bahia de La Paz and 50 were in Bahia Almejas (Appendix 1–3). In both localities, Haemulidae was the most diverse family, with 10 species at each site, followed by Paralichthyidae and Gerreidae, with seven and five species in BP and seven and eight species in BA, respectively.

For BA, two species (*Orthopristis reddingi* Jordan et Richardson, 1895 and *Prionotus ruscarius* Gilbert et Starks, 1904) were found with a relatively small distribution range (from Bahia Magdalena to the Gulf of California), six species had a cosmopolitan range, whereas 42 species had a Tropical Eastern Pacific (TEP) distribution. For BP, we found one – *Exerpes asper* (Jenkins et Evermann, 1889) – with a restricted distribution range inside the Gulf of California, nine species with a cosmopolitan range and 43 species with a TEP distribution.

For BP, six species were defined as residents – Diapterus brevirostris (Sauvage, 1879); Eucinostomus currani Zahuranec, 1980; Eucinostomus dowii (Gill, 1863); Eucinostomus entomelas Zahuranec, 1980; Mugil curema Valenciennes, 1836; and Paralabrax maculatofasciatus (Steindachner, 1868); eight species as temporal visitors, and 36 as occasional visitors. For BA, six species were recognized as residents – Achirus mazatlanus (Steindachner, 1869); Etropus crossotus Jordan et Gilbert, 1882; Paralabrax maculatofasciatus; Paralichthys cali*fornicus* (Ayres, 1859); *Sphoeroides annulatus* (Jenyns, 1842); and *Synodus lucioceps* (Ayres, 1855); 15 species as temporal visitors and 33 as occasional visitors. According to the proportions in each residence category, at both sites, 12% of the species were permanent residents, BA had more temporal residents (27%), and BP had more occasional visitors (72%).

Functional indices

Three similar morphologies were identified in the functional space: flatfish were on the right, tubular/elongated fish were on the left, and the remaining morphologies, mainly perch-like, were around the center (Fig. 2). Higher values of functional richness occurred during the months with more species, which were June, July, September, and October (warm season months), than during the other months, and these months had wider coverage areas in the convex hull (Appendix 4). The FEve did not show a general pattern among the seasons, but Bahía Almejas presented higher values than Bahía de la Paz and the posteriori test showed a significant difference (t = 4.82, P =0.0005).

The FDiv plots for BP showed high value results (more than 70 to a total of 100), indicating specialized functional community composition. In comparison to other months, months with higher temperatures had species with extreme morphologies (i.e., *Mugil curema* and *Etropus crossotus*) that occur more frequently, each

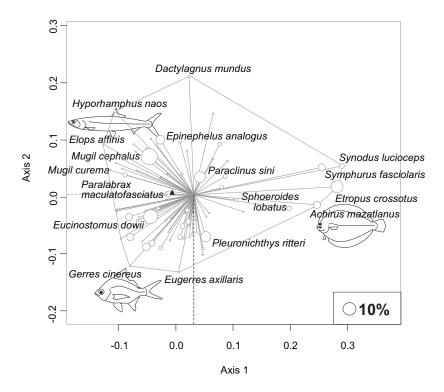


Figure 2. Functional space of the Baja California peninsula. Names describe the species position that is found to be of importance in the community, *Paralabras maculatofasciatus* (black triangle) represent the point where most common morphological traits converge in the community.

month extending the border of the total functional space. On the other hand, in comparison to BP, BA presented a higher frequency of species presence with extreme morphologies (as indicated by the FEve high values), but the monthly functional space did not cover the whole functional space.

The species that seemed to have the highest frequency throughout the year in terms of functional divergence were those located farthest from the functional center of gravity, such as *Etropus crossotus*, *Mugil curema*, and *Symphurus fasciolaris* Gilbert, 1892, with the exception of *Paralabrax maculatofasciatus*, which was close to the center of gravity and represented a good example of the predominant fish morphotype (perc shaped) around this area. Statistical differences were found between sites (t =98.179, P < 2.2e-16) for the months that were available. In comparison to BA, BP presented higher FOri values throughout the year, while BA showed wider variability in high and low values during different months. In general, months with lower temperatures presented higher FOri values, and warmer months presented lower FOri values.

Discussion

As expected from our first hypothesis, fish communities in strictly marine arid mangroves present highly functional specialized traits, as they are present throughout the year in both localities. Some studies in estuaries have identified communities with short functional spatial coverage in temporal analyses (months and seasons, Villeger et al. 2010; Pease et al. 2012), probably due to the physiological constraints required to overcome more dynamic and adverse environments than those of marine arid mangroves (Payán-Alcacio et al. 2020). Because functional analyzes must be uniform in the selection of attributes (Violle et al. 2007) and although maximum biodiversity (1/S) was used instead of abundance data (both provides different results, but they reached the same conclusion; Villéger et al. 2008), we carefully examined our comparison.

Functional analyses confirmed the previously proposed regionalization (Spalding et al. 2007). It seemed that individual participation in the structuring and dynamic processing of the community in terms of its biological, morphological, and physiological traits was more related to oceanographic and biogeographic factors at a larger spatial scale than to similar habitat characteristics and the expected functional redundancy at a more local scale (Stuart-Smith et al. 2013; Frainer et al. 2017). According to the richness and frequency, we identified the families Haemulidae, Paralichthyidae, Gerreidae, Mugilidae, Tetraodontidae, and Serranidae as the most representative in the two mangrove localities on the Baja California Peninsula. Our finding agreed with the results of Castellanos-Galindo et al. (2013) in terms of the most important fish families in mangroves in the Eastern Tropical Pacific.

Although both localities had six resident species, only one (*Paralabrax maculatofasciatus*) occurred at both sites. Based on the permanent resident species, BP seems more centrally structured with benthopelagic fishes (especially members of the Gerreidae family), while BA had a higher number of resident flatfish. Both groups are strong representatives of mangrove fish species in the Pacific (Yáñez-Ararcibia et al. 1983; Castellanos-Galindo et al. 2013).

Regarding resident proportion, in comparison to BA, BP had a higher proportion of occasional visitors, and the results suggested a more open and dynamic environment. This scenario could be related to the geomorphology of the site; BP opens into two large channels connected to the Gulf of California, while BA is an enclosed cove with only one opening (Fig. 1).

Another similarity in the structural composition of these high-latitude mangroves with those in other areas of the Americas was the presence of the family Carangidae. Such fish have a preference for warmer temperatures (Sivakami 1996), and we found carangids at both sites from August to November. The temporal use of mangroves by this fish family could be related to the high availability of prey items, such as juveniles (mean total length <10 cm) of E. dowii and M. curema, as well as some species of Engraulidae and Clupeidae found during the same months at both sites. Although we found a low number of carangid species, as is usually reported for carangids in the mangroves of the Americas (Castellanos-Galindo et al. 2013), the low species diversity in this study could be related to the higher nocturnal feeding activity of the family (Sivakami 1996) and the lack of sampling during that time.

In general, season appeared to be the most important aspect determining the structural and functional characterization of the fish community at both locations. Species richness and organism abundance increased as the temperature increased at both sites, and the opposite effect occurred during the cold months. Similar results were obtained in other studies on the region (González-Acosta et al. 2005; López-Rasgado et al. 2012). The higher species richness during the warm months than during the cold months could be associated with higher temperature values, longer days, maximum litterfall rates, and the presence of nutrients that promote primary production (Félix-Pico et al. 2006; Bizzaro 2008). These characteristics result in food availability for the species inhabiting mangroves (López-Rasgado et al. 2012) and by default increase the range of available functional traits.

For our second hypothesis, the results showed a difference in the functional composition at both sites. Consequently, the results are consistent with the fish biogeography proposal for the Baja California Peninsula that separates BA within the transitional zone (considering the clash the sea currents temperatures, cold and warm from the northern and southern part of the peninsula respectably) and BP within the warmer zone (due to the degree of endemism and isotherms coming from the tropics preventing migration of genetic flow; Briggs and Bowen 2012).

For both localities, the FDiv results indicated specialized community composition. In BP, all extreme-morphology species were present throughout the year, meaning that those specialized species were residents at the site. On the other hand, BA presented changes in the different extreme morphologies according to seasonality (i.e., from benthic flatfish to pelagic species such as *Hyporhamphus naos* Banford et Collette, 2001 to benthopelagic species such as *E. dowii*), indicating strong fragmentation in the community.

Although the community was more specialized, the most common morphological features indicated that the community contained *generalists*, as perch-shaped fish accounted for approximately 50% of the composition. Generalist traits are related to a greater swimming maneuvering capacity (due to the proportion of fins to the body and caudal peduncle; Villéger et al. 2010), allowing them to be efficient at competing for resources under a range of different circumstances (Bridge et al. 2016). In addition, generalists are less sensitive than specialists to alterations in the environment because they occupy a broader niche space (Villéger et al. 2010; da Silva et al. 2018).

The greater functional complexity of the fish community (higher presence of different traits) was related to the months with warm temperatures (August to November), mainly because higher FRic values were positively correlated with species richness (Schleuter et al. 2010). However, if the trade-off between species presence and the number of traits present are considered, greater complexity occurred in BA than in BP, regardless of the different mean temperatures present in the bays (Colder in BA and warmer in BP). This result could reflect a high degree of niche differentiation (Mason et al. 2013) rather than a high number of fish species. As BA is a transition zone between temperate and warm temperatures (Bizarro 2008), the functional traits could be more regularly distributed among species, as shown by the FEve results, and this scenario generates high differentiation of resources

References

- Amezcua-Linares F, Yáñez-Arancibia A (1980) Ecología de los sistemas fluvio-lagunares asociados a Laguna de Términos. El hábitat y estructura de las comunidades de peces. Anales del Instituto de Ciencias del Mar y Limnología 7: 68–118.
- Arreola-Lizárraga JA, Flores-Verdugo FJ, Ortega-Rubio A (2004) Structure and litterfall of an arid mangrove stand on the Gulf of California, Mexico. Aquatic Botany 79(2): 137–143. https://doi. org/10.1016/j.aquabot.2004.01.012
- Bizarro JJ (2008) A review of the physical and biological characteristics of the Bahía Magdalena Lagoon Complex (Baja California Sur, Mexico). Bulletin of the Southern California Academy of Sciences 107(1): 1–24. https://doi.org/10.3160/0038-3872(2008)107[1:A ROTPA]2.0.CO;2
- Bridge TCL, Luiz OJ, Coleman RR, Kane CN, Kosaki RK (2016) Ecological and morphological traits predict depth-generalist fishes on coral reefs. Proceedings of the Royal Society B: Biological Sciences 283(1823): 20152332. https://doi.org/10.1098/rspb.2015.2332

and promotes distinct mechanisms for using the available resources per species (Dolbeth et al. 2016).

Functional originality differed between localities during warmer months (July to November). Although at both sites, an increase in the species occurred, and in comparison to BA, BP presented higher values of FOri due to the occurrence of species with extreme traits (e.g., opportunistic predators). In contrast, the FOri values in BA decreased because more generalist species entered the bay in the warmer months, which lowered community uniqueness, and the resident fishes had the extreme traits. The results suggest that mangrove fish communities in colder waters present a more complex set of traits than those in warmer waters, and this complex set of traits is also found in the functional life strategies of river fish in temperate water (Keck et al. 2014).

Both hypotheses were accepted. The first hypothesis indicated that due to extreme weather conditions (arid and temperate climate) mangrove fish communities at high latitudes present more specialized traits, and the second hypothesis indicated that biogeographic barriers and weather conditions alter the functional composition of the communities despite being found at similar latitudes in the same landmass. Future studies should focus on changes in the functional composition of fish communities in the same ecoregion with different environmental conditions at mangrove sites to validate our findings.

Acknowledgments

We thank Dr José De La Cruz-Agüero for his kind review of the manuscript, as well as all the reviewers during the editorial process because their comments substantially improve this work. JAPA is a fellow graduate student of BEIFI (IPN) and CONACyT. GCA, VHCE, and RME are COFAA (IPN) and EDI (IPN) fellows.

- Briggs JC, Bowen BW (2012) A realignment of marine biogeographic provinces with particular reference to fish distributions. Journal of Biogeography 39(1): 12–30. https://doi.org/10.1111/j.1365-2699.2011.02613.x
- Castellanos-Galindo GA, Krumme U, Rubio EA, Saint-Paul U (2013) Spatial variability of mangrove fish assemblage composition in the tropical eastern Pacific Ocean. Reviews in Fish Biology and Fisheries 23(1): 69–86. https://doi.org/10.1007/s11160-012-9276-4
- Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IK (2014) Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences of the United States of America 111(2): 723–727. https://doi.org/10.1073/pnas.1315800111
- Costa-Azevedo MC, Gomes-Gonçalves RS, Moretti-Mattos T, Uehara W, Soares-Guedes GH, Gerson-Araújo F (2017) Taxonomic and functional distinctness of the fish assemblages in three coastal environments (bays, coastal lagoons and oceanic beaches) in Southeast-

ern Brazil. Marine Environmental Research 129: 180–188. https:// doi.org/10.1016/j.marenvres.2017.05.007

- Costanza R, d'Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world's ecosystem services and natural capital. Nature 387(6630): 253–260. https://doi. org/10.1038/387253a0
- da Silva RS, Baeta ASBV, Pessanha ALM (2018) Are vegetated areas more attractive for juvenile fish in estuaries? A comparison in a tropical estuary. Environmental Biology of Fishes 101(10): 1427–1442. https://doi.org/10.1007/s10641-018-0790-7
- Dolbeth M, Vendel AL, Pessanha A, Patrício J (2016) Functional diversity of fish communities in two tropical estuaries subjected to anthropogenic disturbance. Marine Pollution Bulletin 112(1): 244– 254. https://doi.org/10.1016/j.marpolbul.2016.08.011
- Ellison AM (2002) Macroecology of mangroves: Large-scale patterns and processes in tropical coastal forests. Trees (Berlin) 16(2): 181– 194. https://doi.org/10.1007/s00468-001-0133-7
- Faunce CH, Serafy JE (2006) Mangroves as fish habitat: 50 years of field studies. Marine Ecology Progress Series 318: 1–18. https://doi. org/10.3354/meps318001
- Félix-Pico EF, Holguín-Quiñones OE, Hernández-Herrera A, Flores-Verdugo F (2006) Producción primaria de los mangles del Estero El Conchalito en Bahía de La Paz (Baja California Sur, México). Ciencias Marinas 32(1A): 53–63. https://doi.org/10.7773/cm.v32i1.65
- Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE (1995) Guía FAO para la identificación de especies para los fines de la pesca: Pacifico centro-oriental. Parte 1 (Vol. I–III). FAO, Roma, 646 pp.
- Flores-Verdugo F, Gonzalez-Farias F, Zaragoza-Araujo U (1993) Ecological parameters of the mangroves of semi-arid regions of Mexico: Important for ecosystem management. In: Lieth H, Al Masoom AA (Eds) Towards the rational use of high salinity tolerant plants: Vol. 1 Deliberations about high salinity tolerant plants and ecosystems. Springer Netherlands, Dordrecht, 123–132. https://doi.org/10.1007/978-94-011-1858-3 12
- Ford BM, Roberts JD (2018) Latitudinal gradients of dispersal and niche processes mediating neutral assembly of marine fish communities. Marine Biology 165(5): e94. https://doi.org/10.1007/s00227-018-3356-5
- Frainer A, Primicerio R, Kortsch S, Aune M, Dolgov AV, Fossheim M, Aschan MM (2017) Climate-driven changes in functional biogeography of Arctic marine fish communities. Proceedings of the National Academy of Sciences of the United States of America 114(46): 12202–12207. https://doi.org/10.1073/pnas.1706080114
- Froese R, Pauly D (2019) FishBase. https://www.fishbase.org
- González-Acosta AF, De La Cruz-Agüero G, De La Cruz-Agüero J, Ruíz-Campos G (2005) Seasonal pattern of the fish assemblage of El Conchalito mangrove swamp, La Paz Bay, Baja California Sur, Mexico. Hidrobiológica 15(2): 205–214.
- González-Zamorano P, Lluch-Cota SE, Nava-Sánchez EH (2013) Relation between the structure of mangrove forests and geomorphic types of lagoons of the Baja California Peninsula. Journal of Coastal Research 29(1): 173–181. https://doi.org/10.2112/JCOAS-TRES-D-12-00044.1
- Keck BP, Marion ZH, Martin DJ, Kaufman JC, Harden CP, Schwartz JS, Strange RJ (2014) Fish functional traits correlated with environmental variables in a temperate biodiversity hotspot. PLoS One 9(3): e93237. https://doi.org/10.1371/journal.pone.0093237

- Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1): 299–305. https://doi.org/10.1890/08-2244.1
- López-Rasgado F, Herzka S, Del-Monte-Luna P, Serviere-Zaragoza E, Balart E, Lluch-Cota S (2012) Fish assemblages in three arid mangrove systems of the Gulf of California: Comparing Observations from 1980 and 2010. Bulletin of Marine Science 88(4): 919–945. https://doi.org/10.5343/bms.2011.1111
- Mason NWH, de Bello F, Mouillot D, Pavoine S, Dray S (2013) A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science 24(5): 794–806. https://doi.org/10.1111/jvs.12013
- Millán-Aguilar O, Nettel-Hernanz A, Hurtado-Oliva MÁ, Dodd RS, Flores-Cárdenas F, Manzano-Sarabia M (2019) Landscape metrics and conservation status of five mangrove wetlands in the eastern Gulf of California Margin. Journal of Coastal Research 36(1): 94– 102. https://doi.org/10.2112/JCOASTRES-D-18-00060.1
- Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution 28(3): 167–177. https:// doi.org/10.1016/j.tree.2012.10.004
- Ong JJL, Rountrey AN, Black BA, Nguyen HM, Coulson PG, Newman SJ, Wakefield CB, Meeuwig JJ, Meekan MG (2018) A boundary current drives synchronous growth of marine fishes across tropical and temperate latitudes. Global Change Biology 24(5): 1894–1903. https://doi.org/10.1111/gcb.14083
- Payán-Alcacio JA, De la Cruz-Agüero G, Moncayo-Estrada R (2020) Drivers the fish community, functional diversity in arid mangroves compared to tropical estuaries. Ciencias Marinas 46(4): 193–210. https://doi.org/10.7773/cm.v46i4.3102
- Pease AA, González-Díaz AA, Rodiles-Hernández R, Winemiller KO (2012) Functional diversity and trait–environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology 57(5): 1060–1075. https://doi.org/10.1111/j.1365-2427.2012.02768.x
- Quisthoudt K, Adams J, Rajkaran A, Dahdouh-Guebas F, Koedam N, Randin CF (2013) Disentangling the effects of global climate and regional land-use change on the current and future distribution of mangroves in South Africa. Biodiversity and Conservation 22(6): 1369–1390. https://doi.org/10.1007/s10531-013-0478-4
- Rodríguez-Romero J, López-González LC, Galván-Magaña F, Sánchez-Gutiérrez FJ, Inohuye-Rivera RB, Pérez-Urbiola JC (2011) Seasonal changes in a fish assemblage associated with mangroves in a coastal lagoon of Baja California Sur, Mexico. Latin American Journal of Aquatic Research 39(2): 250–260. https://doi. org/10.3856/vol39-issue2-fulltext-6
- Schaeffer-Novelli Y, Cintron-Molero G (1993) Mangroves of arid environments of Latin America. In: Lieth H, Al Masoom AA (Eds) Towards the rational use of high salinity tolerant plants: Vol. 1 Deliberations about High Salinity Tolerant Plants and Ecosystems. Springer Netherlands, Dordrecht, 107–116. https://doi.org/10.1007/978-94-011-1858-3_10
- Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user's guide to functional diversity indices. Ecological Monographs 80(3): 469– 484. https://doi.org/10.1890/08-2225.1
- Sivakami S (1996) On the food habits of the fishes of the family carangidae a review. Journal of the Marine Biological Association of India 38(1–2): 118–123.
- Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD,

McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57(7): 573–583. https://doi.org/10.1641/B570707

- Stuart-Smith RD, Bates AE, Lefcheck JS, Duffy JE, Baker SC, Thomson RJ, Stuart-Smith JF, Hill NA, Kininmonth SJ, Airoldi L, Becerro MA, Campbell SJ, Dawson TP, Navarrete SA, Soler GA, Strain EMA, Willis TJ, Edgar GJ (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501(7468): 539–542. https://doi.org/10.1038/nature12529
- Tedesco PA, Paradis E, Lévêque C, Hugueny B (2017) Explaining global-scale diversification patterns in actinopterygian fishes. Journal of Biogeography 44(4): 773–783. https://doi.org/10.1111/jbi.12905
- Toussaint A, Charpin N, Brosse S, Villéger S (2016) Global functional diversity of freshwater fish is concentrated in the Neotropics while functional vulnerability is widespread. Scientific Reports 6(1): e22125. https://doi.org/10.1038/srep22125
- Villéger S (2017) Computing functional diversity indices. http://villeger.sebastien.free.fr/Rscripts.html [Accessed: January, 12, 2020]
- Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework

in functional ecology. Ecology 89(8): 2290-2301. https://doi. org/10.1890/07-1206.1

- Villéger S, Miranda JR, Hernández DF, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications 20(6): 1512–1522. https://doi.org/10.1890/09-1310.1
- Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116(5): 882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
- Wilkinson TAC, Wiken E, Bezaury-Creel JE, Hourigan T, Agardy T, Herrmann H, Janishevski L, Madden C, Padilla LM (2010) Marine ecoregions of North America. Commission for Environmental Cooperation, Montreal, 177 pp.
- Yáñez-Ararcibia A, Lara-Domínguez AL, Flores-Hernández D (1983) Environmental behavior of Terminos lagoon ecological system, Campeche, Mexico. Anales del Instituto de Ciencias del Mar y Limnología 10(1): 137–176.
- Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1(1): 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

Appendices

Appendix 1. List of fish species (Actinopterygii) in Baja California Peninsula and their geographic distribution.

Class	Family	Species	Author	Distribution
Pleuronectiformes	Achiridae	Achirus mazatlanus	(Steindachner, 1869)	Eastern Pacific
Perciformes	Scombridae	Auxis thazard	(Lacepède, 1800)	Eastern Pacific
Tetraodontiformes	Balistidae	Balistes polylepis	Steindachner, 1876	Eastern Pacific
Pleuronectiformes	Bothidae	Bothus constellatus	(Jordan, 1889)	Eastern Pacific and Gulf of California
Perciformes	Sparidae	Calamus brachysomus	(Lockington, 1880)	Eastern Pacific
Perciformes	Carangidae	Caranx caninus	Günther, 1867	Eastern Pacific and Gulf of California
Perciformes	Centropomidae	Centropomus medius	Günther, 1864	Eastern Pacific and Gulf of California
Perciformes	Ephippidae	Chaetodipterus zonatus	(Girard, 1858)	Eastern Pacific
Perciformes	Chaetodontidae	Chaetodon humeralis	Günther, 1860	Eastern Pacific
Pleuronectiformes	Paralichthyidae	Citharichthys gilberti	Jenkins et Evermann, 1889	Eastern Pacific
Pleuronectiformes	Paralichthyidae	Citharichthys platophrys	Gilbert, 1891	Eastern Pacific
Perciformes	Gobiidae	Ctenogobius mangicola	(Jordan et Starks, 1985)	Eastern Pacific
Perciformes	Gobiidae	Ctenogobius sagittula	(Günther, 1862)	Eastern Pacific
Pleuronectiformes	Paralichthyidae	Cyclopsetta panamensis	(Steindachner, 1876)	Eastern Pacific
Perciformes	Sciaenidae	Cynoscion parvipinnis	Ayres, 1861	Eastern Pacific
Perciformes	Sciaenidae	Cynoscion stolzmanni	(Steindachner, 1879)	Eastern Pacific
Perciformes	Sciaenidae	Cynoscion xanthulus	Jordan et Gilbert, 1882	Eastern Pacific
Perciformes	Dactyloscopidae	Dactylagnus mundus	Gill, 1863	Eastern Central Pacific
Perciformes	Gerreidae	Diapterus brevirostris	(Sauvage, 1879)	Eastern Pacific
Tetraodontiformes	Diodontidae	Diodon holocanthus	Linnaeus, 1758	Circumtropical distribution
Tetraodontiformes	Diodontidae	Diodon hystrix	Linnaeus, 1758	Circumtropical distribution
Perciformes	Serranidae	Diplectrum pacificum	Meek et Hildebrand, 1925	Eastern Pacific
Elopiformes	Elopidae	Elops affinis	Regan, 1909	Eastern Pacific
Perciformes	Serranidae	Epinephelus analogus	Gill, 1863	Eastern Pacific
Pleuronectiformes	Paralichthyidae	Etropus crossotus	Jordan et Gilbert, 1882	Eastern Pacific
Perciformes	Gerreidae	Eucinostomus currani	Zahuranec, 1980	Eastern Pacific
Perciformes	Gerreidae	Gerres simillimus	Regan, 1907	Eastern Pacific
Perciformes	Gerreidae	Eucinostomus entomelas	Zahuranec, 1980	Eastern Pacific
Perciformes	Gerreidae	Eucinostomus gracilis	(Gill, 1862)	Eastern Pacific
Perciformes	Gerreidae	Eugerres axillaris	(Günther, 1864)	Eastern Central Pacific
Perciformes	Gerreidae	Eugerres lineatus	(Humboldt, 1821)	Eastern Pacific
Perciformes	Labrisomidae	Exerpes asper	(Jenkins et Evermann, 1889)	Eastern Pacific
Syngnathiformes	Fistulariidae	Fistularia commersonii	Rüppell, 1838	Circumtropical distribution
Perciformes	Gerreidae	Gerres cinereus	(Walbaum, 1792)	American distribution
Perciformes	Haemulidae	Haemulopsis elongatus	(Steindachner, 1879)	Eastern Pacific
Perciformes	Haemulidae	Haemulon sexfasciatum	Gill, 1862	Eastern Central Pacific
Perciformes	Haemulidae	Haemulon steindachneri	(Jordan et Gilbert, 1882)	Eastern Pacific
Perciformes	Haemulidae	Haemulopsis leuciscus	(Günther, 1864)	Eastern Pacific

Appendix 1 continues on next page.

Appendix 1. cont.

Class	Family	Species	Author	Distribution
Perciformes	Haemulidae	Haemulopsis nitidus	(Steindachner, 1869)	Eastern Pacific
Clupeiformes	Clupeidae	Harengula thrissina	(Jordan et Gilbert, 1882)	Eastern Pacific
Perciformes	Carangidae	Hemicaranx zelotes	Gilbert, 1898	Eastern Central Pacific
Perciformes	Lutjanidae	Hoplopagrus guentherii	Gill, 1862	Eastern Pacific
Beloniformes	Hemiramphidae	Hyporhamphus naos	Banford et Collette, 2001	Eastern Pacific
Perciformes	Blenniidae	Hypsoblennius gentilis	(Girard, 1854)	Eastern Central Pacific
Pleuronectiformes	Pleuronectidae	Hypsopsetta guttulata	(Girard, 1856)	Eastern Pacific
Perciformes	Lutjanidae	Lutjanus aratus	(Günther, 1864)	Eastern Pacific
Perciformes	Lutjanidae	Lutjanus argentiventris	(Peters, 1869)	Eastern Pacific
Perciformes	Lutjanidae	Lutjanus colorado	Jordan et Gilbert, 1882	Eastern Pacific
Perciformes	Lutjanidae	Lutjanus novemfasciatus	Gill, 1862	Eastern Pacific
Perciformes	Sciaenidae	Menticirrhus undulatus	(Girard, 1854)	Eastern Pacific
Perciformes	Haemulidae	Microlepidotus inornatus	Gill, 1862	Eastern Central Pacific
Perciformes	Sciaenidae	Micropogonias ectenes	(Jordan et Gilbert, 1882)	Eastern Central Pacific
Mugiliformes	Mugilidae	Mugil cephalus	Linnaeus, 1758	Circumtropical distribution
Mugiliformes	Mugilidae	Mugil curema	Valenciennes, 1836	American distribution
Siluriformes	Ariidae	Occidentarius platypogon	(Günther, 1864)	Eastern Pacific
Perciformes	Carangidae	Oligoplites altus	(Günther, 1868)	Eastern Pacific
Perciformes	Carangidae	Oligoplites saurus	(Bloch et Schneider, 1801)	American distribution
Clupeiformes	Clupeidae	Opisthonema libertate	(Günther, 1867)	Eastern Pacific
Perciformes	Haemulidae	Orthopristis reddingi	Jordan et Richardson, 1895	Eastern Central Pacific
Perciformes	Labrisomidae	Paraclinus mexicanus	(Gilbert, 1904)	Punta Concepción BCS
Perciformes	Labrisomidae	Paraclinus sini	Hubbs, 1952	Eastern Central Pacific
Perciformes	Serranidae	Paralabrax maculatofasciatus	(Steindachner, 1868)	Eastern Central Pacific
Perciformes	Serranidae	Paralabrax nebulifer	(Girard, 1854)	Eastern Pacific
Pleuronectiformes	Paralichthyidae	Paralichthys californicus	(Ayres, 1859)	Eastern Pacific and Gulf of California
Pleuronectiformes	Paralichthyidae	Paralichthys woolmani	Jordan et Williams, 1897	Eastern Pacific
Pleuronectiformes	Pleuronectidae	Pleuronichthys ritteri	Starks et Morris, 1907	Eastern Pacific
Perciformes	Haemulidae	Pomadasys branickii	(Steindachner, 1879)	Eastern Pacific
Perciformes	Haemulidae	Pomadasys panamensis	(Steindachner, 1876)	Eastern Pacific
Scorpaeniformes	Triglidae	Prionotus ruscarius	Gilbert et Starks, 1904	Gulf of California and Magdalena Bay
Perciformes	Mullidae	Pseudupeneus grandisquamis	(Gill, 1863)	Eastern Pacific
Perciformes	Gobiidae	Quietula y-cauda	(Jenkins et Evermann, 1889)	Eastern Pacific and Gulf of California
Perciformes	Haemulidae	Rhonciscus bayanus	(Jordan et Evermann, 1898)	Eastern Pacific
Clupeiformes	Clupeidae	Sardinops sagax	(Jenyns, 1842)	Circumtropical distribution
Perciformes	Scaridae	Scarus perrico	Jordan et Gilbert, 1882	Eastern Pacific
Scorpaeniformes	Scorpaenidae	Scorpaena russula	Jordan et Bollman, 1890	Eastern Pacific
Tetraodontiformes	Tetraodontidae	Sphoeroides annulatus	(Jenyns, 1842)	Eastern Pacific
Tetraodontiformes	Tetraodontidae	Sphoeroides lobatus	(Steindachner, 1870)	Eastern Pacific
Pleuronectiformes	Paralichthyidae	Syacium ovale	(Günther, 1864)	Eastern Pacific
Pleuronectiformes	Cynoglossidae	Symphurus atramentatus	Jordan et Bollman, 1890	Gulf of California and Magdalena Bay
Pleuronectiformes	Cynoglossidae	Symphurus fasciolaris	Gilbert, 1892	Gulf of California and Magdalena Bay
Aulopiformes	Synodontidae	Synodus lucioceps	(Ayres, 1855)	Eastern Pacific
Perciformes	Haemulidae	Haemulon californiensis	(Steindachner, 1876)	Eastern Pacific

Appendix 2. Presence of the species in Bahía Almejas.

Species	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
A. mazatlanus	1	1	1	1	1	1	1	1	1	1	1	1
B. polylepis	1	1	1	1	0	0	1	0	0	1	1	1
B. constellatus	0	1	1	1	0	1	0	0	1	1	1	0
B. californiensis	0	0	0	0	0	0	0	0	0	1	0	0
C. brachysomus	1	1	0	0	0	0	0	0	0	1	1	1
C. caninus	1	0	0	0	0	0	0	0	0	0	0	1
C. medius	0	0	0	0	0	0	0	0	0	0	1	0
C. zonatus	1	0	0	1	0	0	0	0	0	0	1	0
C. humeralis	0	0	0	0	0	0	0	0	0	0	1	0
C. panamensis	1	0	0	1	1	0	0	0	0	0	1	1
C. parvipinnis	0	0	0	0	0	0	0	0	0	0	1	1
D. mundus	0	0	0	0	0	0	0	1	0	1	1	0
D. brevirostis	1	1	0	0	0	1	0	0	0	1	1	1
D. holocanthus	0	0	0	1	0	0	1	0	0	0	1	0
D. hystrix	1	0	0	1	0	0	0	0	1	0	0	0
D. pacificum	1	0	0	0	0	0	0	0	0	0	1	0
E. analogus	0	0	1	0	0	0	0	0	0	0	1	1
E. crossotus	1	1	1	1	1	1	1	1	1	1	1	1
E. dowii	0	1	1	1	1	1	1	0	0	1	1	1

Appendix 2 continues on next page.

Appendix 2. cont.

Species	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
E. gracilis	1	1	0	0	0	0	0	1	1	1	1	1
E. axillaris	0	0	0	0	0	0	0	0	0	0	1	0
F. commersonii	0	0	0	0	0	0	0	1	0	0	0	0
G. cinereus	0	0	0	0	0	0	0	0	0	0	1	0
H. steindachneri	0	0	0	0	0	0	1	0	1	1	0	0
H. leuciscus	1	0	0	0	1	1	1	0	0	1	0	1
H. nitidus	0	0	0	0	0	0	0	0	0	1	0	0
H. guentherii	0	0	0	0	0	0	0	1	0	1	0	1
H. gentilis	0	0	0	0	0	0	1	1	1	0	1	0
H. guttulata	0	1	0	0	0	0	0	0	0	0	0	0
L. aratus	0	0	0	0	0	1	0	0	1	1	0	0
L. argentiventris	1	1	0	0	0	1	0	1	0	1	1	1
L. colorado	0	0	0	0	0	0	0	0	0	0	1	0
L. novemfasciatus	0	0	0	0	0	0	0	0	0	0	1	0
M. undulatus	0	0	0	0	0	0	0	0	1	0	0	0
M. inornatus	0	0	0	0	0	0	0	0	0	1	0	0
M. ectenes	0	0	0	1	0	0	1	0	0	0	0	0
O. reddingi	1	1	0	1	0	0	0	0	0	1	1	1
O. platypogon	0	0	0	0	0	0	1	0	0	0	0	0
P. maculatofasciatus	1	1	1	1	1	1	1	1	1	1	1	1
P. nebulifer	0	1	0	0	0	0	0	0	0	0	0	0
P. californicus	1	1	1	1	1	1	1	1	1	0	1	1
P. woolmani	0	0	1	0	0	0	0	1	1	0	1	0
P. ritteri	0	0	0	1	0	1	0	0	0	0	0	0
P. panamensis	1	0	0	0	0	0	0	0	0	1	0	0
P. ruscarius	0	1	0	1	1	1	1	0	0	0	1	1
P. grandisquamis	1	1	0	1	1	0	1	0	0	0	0	1
R. bayanus	0	1	0	0	0	0	0	0	0	1	1	0
S. perrico	0	0	0	0	0	0	1	0	0	0	0	0
S. russula	1	0	0	0	1	0	0	0	0	1	0	0
S. annulatus	1	1	1	1	1	1	1	1	1	1	1	1
S. ovale	0	1	0	1	0	0	0	0	0	0	1	0
S. atramentatus	0	0	1	1	1	1	1	1	1	0	1	0
S. fasciolaris	0	0	0	0	0	0	1	0	0	0	0	0
S. lucioceps	1	1	1	1	1	1	1	1	0	1	0	1

Appendix 3	Presence of	the species	in Bahía	de La Paz.
------------	-------------	-------------	----------	------------

Species	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
A. mazatlanus	0	0	1	0	0	0	0	1	0	0	1	0
A. thazard	0	0	0	0	0	0	1	0	0	0	0	0
C. zonatus	0	0	0	0	0	0	0	0	0	0	0	1
C. gilberti	0	0	0	1	0	0	0	0	0	0	0	0
C. platophrys	0	0	0	0	0	0	0	0	0	0	1	1
C. mangicola	0	0	0	0	0	0	0	0	1	0	0	0
C. sagittula	0	0	1	1	1	1	0	0	0	1	1	1
C. stolzmanni	0	0	0	0	0	0	0	0	0	1	0	0
C. xanthulus	0	0	0	0	0	0	0	0	0	0	1	1
D. brevirostis	1	1	0	1	1	1	1	1	1	1	1	1
D. hystrix	1	0	0	1	1	0	1	0	1	1	1	0
E. affinis	0	0	1	0	0	0	0	0	0	0	0	0
E. crossotus	0	0	0	0	1	1	0	0	1	1	1	1
E. currani	1	1	1	1	1	1	1	1	1	1	1	1
E. dowii	1	1	1	1	1	1	1	1	1	1	1	1
E. entomelas	1	1	1	1	1	1	1	1	1	1	1	1
E. gracilis	0	0	0	0	1	0	1	1	0	0	0	1
E. lineatus	0	0	0	0	0	0	1	0	0	1	0	0
E. asper	0	0	0	0	0	0	0	0	0	0	0	1
F. commersonii	0	0	0	0	0	1	0	1	0	0	0	0
G. cinereus	0	0	0	0	0	0	0	0	0	1	0	1
H. sexfasciatum	1	0	0	0	0	0	0	0	0	0	0	0
H. steindachneri	0	0	0	0	0	0	0	0	0	0	0	1
H. elongatus	0	0	0	0	0	0	0	0	0	0	0	1
H. leuciscus	0	0	0	0	0	0	1	0	1	0	0	0
H. thrissina	0	0	0	0	0	0	1	0	0	0	0	0
H. zelotes	0	0	0	0	0	0	0	0	0	1	0	0
H. guentherii	0	0	0	0	1	0	0	0	0	0	1	0
H. naos	0	0	1	0	0	1	1	1	1	1	1	1
H. gentilis	0	0	0	0	1	0	0	0	0	0	0	0

Appendix 3 continues on next page.

Appendix 3. cont.

Species	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
L. aratus	0	0	0	0	0	0	1	0	0	0	0	0
L. argentiventris	0	0	0	0	1	0	1	1	1	1	1	1
L. colorado	0	0	0	0	0	0	0	0	1	0	1	0
L. novemfasciatus	0	0	0	0	1	0	0	0	0	1	0	1
M. cephalus	0	0	0	0	0	0	0	0	1	0	0	0
M. curema	1	1	1	1	1	1	1	1	1	1	1	1
O. altus	0	0	0	0	0	0	0	0	0	1	0	1
O. saurus	0	0	0	0	0	0	0	0	0	0	0	1
O. libertate	0	0	0	0	0	0	1	0	0	0	0	0
O. reddingi	0	0	0	0	0	0	0	0	0	0	0	1
P. mexicanus	0	0	0	0	1	1	0	0	0	0	0	0
P. sini	0	0	0	0	0	0	0	0	0	0	1	0
P. maculatofasciatus	1	1	1	1	1	1	1	0	1	1	1	1
P. branickii	0	0	0	0	0	0	0	0	0	0	0	1
P. macracanthus	0	0	0	0	0	1	0	0	0	1	0	0
R. bayanus	0	0	0	1	0	1	1	0	0	1	1	0
Q. ycauda	0	0	0	1	1	1	0	0	0	0	0	0
S. sagax	0	0	0	0	0	0	0	0	0	1	0	0
S. annulatus	1	0	1	1	1	1	0	0	0	1	0	1
S. lobatus	0	0	0	0	0	0	0	0	0	0	0	1

Appendix 4. Values of the different functional indexes in the Baja California Peninsula and between the two bays (Bahía de la Paz and Bahía Almejas); bold numbers represent higher values and different trends between sites.

		Peni	nsula			Magdalena	Transition		Cortezian				
-	FRic	FDiv	FEve	FOri	FRic	FDiv	FEve	FOri	FRic	FDiv	FEve	FOri	
Jan	0.0011	0.7755	0.7345	0.0982	0.0007	0.7455	0.8203	0.0990	0.0088		_	0.1416	
Feb	0.0007	0.7082	0.5709	0.1030	0.00001	0.7945	0.8872	0.1231	0.0140	_	_	0.1807	
Mar	0.0087	0.8789	0.6951	0.1082	0.0040	0.7856	0.8844	0.1159	0.0059	0.000001	0.7660	0.1574	
Apr	0.0019	0.7989	0.5890	0.1055	0.00004	0.7533	0.8488	0.1116	0.0078	0.0004	0.7559	0.1617	
May	0.0038	0.7776	0.7178	0.1044	0.00004	0.7440	0.8121	0.1068	0.0014	0.0001	0.7402	0.1813	
Jun	0.0207	0.8030	0.6197	0.1104	0.0027	0.7662	0.8567	0.1091	0.0025	0.0001	0.7477	0.1497	
Jul	0.0059	0.7804	0.7153	0.1095	0.0006	0.7463	0.8014	0.1231	0.0124	_	_	0.1928	
Aug	0.0033	0.8320	0.6905	0.1072	0.00003	0.7756	0.8241	0.1113	0.0022	0.00001	0.7393	0.1674	
Sep	0.0321	0.7787	0.5059	0.1063	0.0006	0.6992	0.7485	0.0848	0.0042	0.0024	0.7573	0.1630	
Oct	0.1136	0.7653	0.4876	0.1007	0.0573	0.7733	0.8580	0.1086	0.0034	0.0004	0.7330	0.1709	
Nov	0.0096	0.7926	0.6739	0.0964	0.0007	0.7358	0.8150	0.0908	0.0005	0.0054	0.7512	0.1530	
Dec	0.0022	0.8026	0.6347	0.0963	0.0003	0.7423	0.8154	0.0873	0.0130		_	0.1487	