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Abstract

Information about ploidy is important in both commercial and conservation aquaculture and fish research. Unfortunately, methods 
for its determination, such as karyology, determination of the amount of DNA in a cell using microdensitometry or flow cytometry 
and/or measuring erythrocytes in a blood smear can be stressful or even destructive. Some of these methods are also limited by the 
relatively large minimum size of the individual being measured. The aim of this study was to test a new low-stress method of de-
termining ploidy by measuring the size of erythrocytes in the capillaries of a fish, including small individuals. First, we examined 
diploid and triploid loach (Cobitis sp.) and gibel carp, Carassius gibelio (Bloch, 1782), using flow cytometry and blood smears, with 
these results being used as a control. Subsequently, we measured the size of erythrocytes in the caudal fin capillaries of anesthetized 
fishes of known ploidy under a light microscope. For both the loaches and gibel carp, direct observation of the mean erythrocyte size 
in epithelial fin capillaries provided a consistent and reliable determination of ploidy when compared with the controls based on flow 
cytometry and blood smears. This new method allows for rapid determination of ploidy in living small fish, where collection of tissue 
using other methods may cause excessive stress or damage. The method outlined here simply requires the measurement of erythro-
cytes directly in the bloodstream of a live fish, thereby making it possible to determine ploidy without the need for blood sampling. 
The method described is sufficiently efficient, less demanding on equipment than many other procedures, can be used by relatively 
inexperienced personnel and has benefits as regards animal welfare, which is especially important for fish production facilities or 
when dealing with rare or endangered species.
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Introduction

Polyploidy, the multiplication of whole sets of chromo-
somes beyond the normal set of two, occurs independent-
ly in many groups of fish, from sharks to the higher tele-
osts. While there are several ways that a polyploid fish 
can develop, environmental change and hybrid stabili-
zation may play a large role in the initiation of a new 
polyploid species. Polyploid fish could gain an advantage 
over diploid fish through increased heterozygosity, the 

divergence of duplicate genes, and/or increased expres-
sion of key physiological proteins (Leggatt and Iwama 
2003). Hybridization and polyploidization thus became 
increasingly appreciated as important evolutionary mech-
anisms that even had a profound impact on mankind, such 
as increased crop yields, quality or pathogen-resistance 
(Mason and Batley 2015).

At the phenotypic level, the effects of polyploidiza-
tion are often mild and idiosyncratic (Otto 2007). Cell 
volume generally rises with increasing genome size 
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(Cavalier-Smith 1978; Gregory 2001), although the ex-
act relation between ploidy and cell volume varies among 
environments and taxa.

Further, although cell size typically is larger in poly-
ploids, adult size may or may not be altered; as a rough 
generalization, polyploidization is more likely to increase 
adult body size in plants and invertebrates than in verte-
brates (Otto and Whitton 2000; Gregory and Mable 2005).

Triploidy may be accompanied by morpho-anatomi-
cal changes to the organs. Changes may occur not only 
in proportion but also as anomalies or deformations that 
have clearly negative impacts on the individual. For ex-
ample, in fish, negative changes may include gill defects 
such as missing gill filaments, leading to a reduction in 
gill surface area, as recorded in triploid Salmo salar by 
Sadler et al. (2001).

In addition to possible changes in organ structure, 
polyploid individuals may also show differences in physi-
ology. Previous studies have tended to focus on differenc-
es in metabolism rates between diploid and triploid fish 
or the ability to survive in oxygen-poor environments. 
The results of these studies have tended to be ambiguous, 
however, showing variability within both species and de-
velopmental stages, depending on test conditions (e.g., 
Benfey and Sutterlin 1984; Lilyestrom et al. 1999; Ellis 
et al. 2013).

Polyploidy is especially common in loach (Cobitis sp.) 
(Papoušek et al. 2008), gibel carp, Carassius gibelio (see 
Vetešník et al. 2006) complexes and in artificial fish farm-
ing conditions (Piferrer et al. 2009; Preston et al. 2013; 
Fiske et al. 2019). These hybrid diploid polyploid com-
plexes and polyploidization are currently intensively used 
in a whole range of studies, from evolutionary issues to 
fish production (Kotusz et al. 2014; Pakosta et al. 2018; 
Bartoš et al. 2019).

To accurately identify individual biotypes, it is neces-
sary to gradually combine several diagnostic approaches: 
sequencing of mitochondrial and nuclear markers, allo-
zyme analysis, and cytogenetic tools (e.g., karyotyping 
and C-banding), including the determination of degrees 
of ploidy (Bohlen and Ráb 2001).

Three basic methods were used in the presently report-
ed study to detect polyploidy: i) karyology (e.g., Blaxhall 
1975), the only method able to determine the exact num-
ber of chromosomes; ii) determination of the amount of 
DNA in a cell using microdensitometry (e.g., Gervai et al. 
1980; Hardie et al. 2002) or flow cytometry (e.g., Thor-
gaard et al. 1982); or iii) comparison of whole erythro-
cyte or nucleus size between ploidies, using, for example, 
a microscope or an automated particle size analyzer (e.g., 
Thorgaard and Gall 1979; Benfey et al. 1984; Flajšhans 
1997; Fiske et al. 2019). These methods usually have a 
number of limitations, including the necessity for special-
ized equipment, a need to kill (especially in karyology or 
flow cytometry of muscle tissue), or otherwise damage 
the fish (e.g., through fin clipping or removal of blood 
for flow cytometry or blood smears) and/or financial and 
time constraints.

In this paper, we present a new method for determining 
ploidy based on the measurement of erythrocyte size in 
caudal fin capillaries. The method is non-invasive, suit-
able for small fish that should not be killed, affordable, 
and does not require specialized equipment.

Methods
For this study, we examined 20 loaches (10× diploid 
Cobitis elongatoides, 10× triploid C. elongatoides 
× C. tanaitica; standard length [SL] 6.0–8.5 cm and 20 
gibel carp (10× diploid, 10× triploid; SL 1.5–2.5 cm). 
Ploidy in these individuals was initially determined by 
flow cytometry (as DNA content using a Partec CCA flow 
cytometer; dyed with DAPI-CyStain DNA 1-step solu-
tion) on a blood sample (loach 2n = 103.6% (96.0–112.0); 
3n = 153.8% (142.0–164.4); gibel carp 2n = 97.8% 
(94.4–104.4); 3n = (154.0% (146.6–162.8)) (Flajšhans 
et al. 2005), using the gold fish (Carassius auratus) as 
a standard (=100%), and a separate blood smear (Boroń 
1994) for measurement of length erythrocyte (without 
staining). These data were used as a control for compari-
son with the new method.

The fish used for measurement of erythrocyte size in 
caudal fin capillaries were immobilized on the mechani-
cal stage of an Olympus BX50 light microscope using a 
36 × 125 mm ‘pad’ with two overlapping tiles glued to the 
underlying glass (Fig. 1). This allowed for the placement 
of individuals exceeding the length of the classical glass 
(76 mm) as well as allowing the pad to be fastened using 
stage clips and moved with the stage controls.

The individual being examined was first anesthetized 
with clove oil (0.05 mL in 1 L of water; Svoboda and 
Kolářová 1999) and then placed on its side on the under-
lying glass. The caudal fin was then stretched, allowing 
blood in the epithelial capillaries to be observed using 
a 40× lens. At the same time, an image was transferred 
to the computer screen using an Olympus DP70 camera. 
In vivo measurements (major axes) were obtained for 20 
cells using Photoshop software. As the high velocity of 
the blood cells usually did not allow for high quality pho-
tographic capture, images were obtained from localities 
where blood flow was reduced to a minimum.

Results
For both the loaches and gibel carp, direct observation 
of mean erythrocyte size in epithelial fin capillaries pro-
vided a consistent and reliable determination of ploidy 
(Table 1; Figs 2–4), using flow cytometry and blood 
smears as controls.

The ratio of the mean fin capillary erythrocyte length 
was similar to that for blood smears, the lower absolute 
values observed using blood smears most likely being the 
result of cell shrinkage after drying on the surface of the 
glass or that larger values obtained using this new method 
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Figure 1. Loach (1) and gibel carp (3) mounted on the light microscope using the pad made from two overlapping underlying glass (2).

Figure 2. Erythrocytes of gibel carp; arrows = erythrocytes in capillaries, dotted line = erythrocyte length.
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Table 1. Erythrocyte length [μm] for loach (Cobitis sp.) and 
gibel carp (Carassius gibelio) measured from blood smears and 
direct from fin capillaries.

Species Source 2n 3n 2n:3n 
ratioMean Range SD Mean Range SD

Loach Smear 13.8 13.1–14.4 0.35 16.9 16.2–17.5 0.42 1:1.22
Capillary 15.5 14.6–16.1 0.39 19.3 18.4–19.8 0.43 1:1.25

Gibel 
carp

Smear 13.2 12.7–13.4 0.24 16.3 15.5–17.0 0.43 1:1.25
Capillary 15.0 13.9–15.8 0.68 17.9 16.4–18.9 0.54 1:1.19

SD = standard deviation.

Figure 3. Erythrocytes of cobitids; arrows = erythrocytes in capillaries, dotted line = erythrocyte length.

Figure 4. Erythrocyte length (mean in μm) for loach (1–10 = diploid/2n; 11–20 = triploid/3n) and gibel carp (21–30 = diploid; 
31–40 = triploid), measured from blood smears and directly from fin capillaries.
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were due to cell deformation (stretching) of the cells by 
passage through a capillary.

Discussion
A range of methods have been used to identify poly-
ploid fish; however, each has specific limitations. 
While chromosome preparation and counting are now 
considered inexpensive and require little specialized 
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equipment, it is not always easy to perform or success-
ful. Further, while there are exceptions (see Kalous et 
al. 2010), the method requires that the fish be killed 
and the results take time, often up to 24 h (e.g., Kli-
germann and Bloom 1977; Felip et al. 2009). A sec-
ond method frequently utilized is the measurement 
of DNA content in individual blood cells (Wolters et 
al. 1982; Kotusz 2008), muscle samples, or from a fin 
clip using either microfluorimetry, microdensitometry 
(Gervai et al. 1980), or flow cytometry (Thorgaard et 
al. 1982). In the case of blood samples and fin clips, 
while there is no need to kill the fish and the results 
are obtained relatively quickly (minutes to tens of min-
utes), the method is expensive and requires specialized 
equipment. Finally, ploidy has also been determined 
by measuring the length and width of whole red blood 
cells or (more often) their nuclei. By using a suitable 
nuclear staining technique (e.g., Giemsa, hematoxylin), 
the nucleus “area” can also be determined through im-
age analysis (Cherfas 1966; Benfey et al. 1984; Felip 
et al. 2009). Though the results obtained from nucleus 
measurements tend to be statistically more significant, 
differences in the maximum whole-cell size tend to be 
sufficient to distinguish diploid and triploid individuals. 
While this method is relatively quick and inexpensive 
and does not require specialized equipment (aside from 
image analysis software) or chemicals, it does require 
a blood sample. Even in larger individuals (up to ca. 
10 cm), removal of a blood sample can result in injury 
or even the death of the fish; and in small individuals 
(up to 1–2 cm), removal of a suitable blood sample may 
prove difficult.

In comparison, the method outlined here simply re-
quires direct measurement of erythrocytes in the blood-
stream of a live fish, thereby making it possible to deter-
mine ploidy without the need for a blood sample of any 
kind. Our results indicate that the difference in erythro-
cyte size between diploid and triploid individuals is per-
fectly sufficient to reliably determine ploidy. Equipment 
requirements are limited to a standard optical microscope 
with a 40× zoom lens and a camera/video attachment al-
lowing an image of the blood cells to be captured and 
measured. The fish can then be returned to the water after 
recovering from the anesthetic. Further, the level of stress 
is relatively low, especially compared to some of the “in-
vasive” methods mentioned above.

Conclusions
The method described is sufficiently efficient, less de-
manding on equipment than many other procedures (e.g., 
flow cytometry, microdensitometry), for especially small 
fish, can be used by relatively inexperienced personnel 
and has benefits as regards animal welfare, which is es-
pecially important for fish production facilities or when 
dealing with rare or endangered species.
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