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Abstract

Chaeturichthys stigmatias	Richardson,	1844,	a	fish	species	of	the	family	Gobiidae,	is	an	offshore	warm-temperate	fish	species	and	a	
dominant component of estuarine ecosystems. In this study, restriction site-associated DNA sequencing was adopted to analyze the 
traits of candidate microsatellite markers for C. stigmatias, and 30 polymorphic loci were developed. A total of 5631 microsatellites 
with primer fragments were detected, among which trinucleotide repeats (57.56% of the total simple sequence repeats) were the 
most abundant, followed by di- (23.30%), tetra- (11.79%), penta- (4.14%), and hexa- (3.21%) nucleotide repeats type. The numbers 
of alleles per locus ranged from 6 to 14 with the mean value of 10.4. The mean value of observed heterozygosity and the expected 
heterozygosity were 0.349 and 0.870, respectively. The microsatellite locus with the lowest polymorphic information content (PIC) 
was	0.749,	which	indicated	that	all	sites	were	highly	polymorphic	(PIC	>	0.50).	This	is	the	first	microsatellite	development	and	char-
acterization of this species to be reported.
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Introduction

The branded goby, Chaeturichthys stigmatias Richardson, 
1844 (also known as 矛尾鰕虎魚,	 finespot	 goby,	 or	
Cá	Bống	 râu	mắt	 nhỏ),	 is	 a	warm-temperate	 nearshore	
benthic	 fish	 which	 is	 widely	 distributed	 in	 the	 coastal	
areas of China, Korea, and Japan (Sun et al. 2015). 
Chaeturichthys stigmatias expresses strong phenotypic 

plasticity and can adapt to the changes of a variety of 
environmental factors, such as the bottom temperature 
and salinity (Liu et al. 2015). Although the important 
ecological values of C. stigmatias have been determined 
by biologists, the related studies mainly focused on the 
resource survey, community structure, feeding ecology, 
and	 fishery	 biological	 characteristics	 (Zhang	 et	 al.	
2016; Meng et al. 2017; Li et al. 2018; Feng et al. 2019; 
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Kindong et al. 2020; Han unpublished*). The information, 
however, about its genetic diversity and molecular 
markers is limited.

Exploring genetic diversity and population genetic 
structure may lead to a better understanding of the ecological 
importance of Gobiidae (see Yuan et al. 2012; Meng et 
al. 2017). Among molecular markers, microsatellites, or 
simple sequence repeats (SSR), is a simple repeat that is 
uniformly distributed in eukaryotic genomes and consists 
of tandem repeats of 2–6 nucleotides (Edwards et al. 
1991). Given its codominance, high reproducibility, rich 
polymorphism, wide distribution, high stability, and easy 
detection (Dou et al. 2015; Song et al. 2016; Parthiban 
et al. 2018; Li et al. 2019), microsatellite markers have 
been used in a wide range of applications in population 
genetics, genetic breeding, evolutionary studies, 
identification	 of	 relations	 and	 individual	 identification	
(Lu et al. 2005; Hayes et al. 2007; Queirós et al. 2015), 
which can provide data reference and research guidance 
for them. In addition, microsatellite markers are greatly 
effective	 tools	 in	 population	 genetic	 studies	 because	
they could reveal the distinct population segments even 
in	 fine-scale	 genetic	 structure	 studies	 (Gandomkar	 et	
al. 2021). Therefore, it is essential to use microsatellite 
markers	more	conveniently	and	efficiently.	However,	the	
traditional methods for developing microsatellite markers 
are usually expensive, time-consuming, and cumbersome 
steps, with low coverage of loci in the genome, a long 
development cycle, and low versatility. Especially for 
non-model	species	with	insufficient	genetic	information,	
the	development	of	microsatellite	markers	is	still	difficult.	
In recent years, with the further maturity of the new 
generation of high-throughput sequencing technology 
and the rapid reduction of sequencing costs, a large 
number of plastid genomes, transcriptomes, and even 
genomes of non-model organisms have been sequenced, 
and the sequencing data in NCBI or other databases have 
increased	significantly.	As	a	reliable	tool,	high-throughput	
sequencing	 technologies	optimize	 the	field	of	discovery	
and development of molecular markers by generating 
large amounts of data (Shendure and Ji 2008; Stapley et 
al. 2010; Ekblom and Galindo 2011; Duan et al. 2017). In 
fact, high-throughput sequencing for developing SSR does 
not require sequencing depth as high as genome assembly 
and annotation, so the cost of this method is relatively 
low. Recently, high-throughput sequencing has been used 
to	develop	microsatellite	markers	 in	many	fish,	 such	as	
Ctenopharyngodon idella (Valenciennes, 1844) (see Yu et 
al. 2014), Coilia nasus Temminck et Schlegel, 1846 (see 
Fang et al. 2015), Colossoma macropomum (Cuvier, 1816) 
(see Ariede et al. 2018), Genypterus chilensis (Guichenot, 
1848) (see González et al. 2019), and Capoeta aculeata 
(Valenciennes, 1844) (see Gandomkar et al. 2021).

Restriction site-associated DNA sequencing (RAD-
seq) is a powerful tool to characterize the microsatellite 

*	 Han	DY	(2013)	[Study	on	feeding	ecology	of	dominate	gobiid	fishes	in	Jiaozhou	Bay.]	Dissertation,	Ocean	University	of	China,	
Qingdao,	China.	[In	Chinese]

and single nucleotide polymorphism (SNP) markers, 
which was based on the second-generation sequencing 
technology (Khoshkholgh and Nazari 2020; Gandom-
kar et al. 2021). The reads generated by RAD-seq are 
grouped according to the enzyme recognition sequence, 
which could improve the precision and accuracy of con-
tigs assembly, and improve the success rate of developing 
polymorphic microsatellite markers (Wei et al. 2014). In 
this study, RAD-seq was used to obtain preliminary data, 
and these data were applied to develop the Chaeturichthys 
stigmatias	microsatellite	primers,	and	finally,	the	validity	
of	polymorphic	primers	was	verified.	The	presently	report-
ed results may lay the foundation and provide references 
for	the	management	and	conservation	of	fishery	resources.

Material and methods
Sampling and DNA extraction

A specimen of Chaeturichthys stigmatias was collected 
from the coast of Qingdao, China in November 2018, 
and sent for high-throughput sequencing. Dozens of C. 
stigmatias were collected from Zhoushan (August 2019), 
Qingdao (December 2019), Yantai (December 2019), and 
Weihai (October 2020), and 24 of them were used for 
polymorphism detection and genetic diversity analysis in 
this study. The samples were quickly dissected, and part of 
the muscle tissues on the caudal peduncle were collected 
and preserved in 95% alcohol in ice box, and then stored 
in –80°C for DNA extraction. The traditional phenol–
chloroform method was used to extract genomic DNA. 
The total DNA was treated with RNase, and the DNA 
with high purity and without RNA contamination was 
obtained for the detection of SSR primers polymorphism. 
The extracted DNA was measured using a Nanodrop 2000 
(Thermo	 Scientific,	USA)	 and	 a	Qubit	 2.0	 (Invitrogen,	
USA)	bioanalyzer	system.

RAD library construction and 
sequencing

After DNA quality inspection, library construction and 
sequencing were conducted. The steps of RAD library 
construction (Baird et al. 2008) were as follows: (1) Ge-
nomic	DNA	from	the	sample	was	digested	at	specific	sites	
with a restriction enzyme, and the adapter P1 was ligated 
to the digested product. The P1 adapter contains forward 
amplification	and	Illumina	sequencing	primer	sites,	and	
an	individual-specific	nucleotide	barcode;	(2)	The	adapt-
er-ligated fragments were then pooled, randomly sheared, 
and size-selected; (3) DNA was then ligated to a second 
adapter (P2), a Y adapter containing the reverse comple-
ment	of	the	reverse	amplification	primer	site,	which	en-
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sures that lacking P1 adapter-ligated genomic fragments 
could	not	be	amplified;	(4)	RAD	tags	with	P1	adapter	will	
be	selected	and	amplified,	and	the	300–700	bp	sequences	
were recovered. Agilent 2100 and Q-PCR were used to 
detect	the	size	of	library	fragments	and	library	quantifica-
tion to determine whether the library meets the sequenc-
ing standard and then sequenced using the Illumina HiS-
eq2000 platform following the manufacturer’s protocol. 
To obtain the clean reads, the reads with more than 10% 
N	bases	or	low-quality	bases	≤5,	adapter	sequences,	and	
duplicated sequences were discarded. The clean reads 
were used for subsequent analysis.

Detecting and verifying microsatellite 
primers

The software of detecting sequence repeats is “SSR 
search”, which is a Perl program written by Novogene 
(Beijing). The detection software is divided into three 
modules.	The	first	module	 is	used	 to	detect	all	simple	
repeats	of	DNA	sequence,	the	second	module	is	to	fil-
ter	the	results	of	the	first	module	to	remove	the	simple	
repeats that are too close. The detection criteria were as 
follows: the length of the SSR repeat unit ranges from 
2 to 6 bp; the minimum length of the SSR sequence 
was 12 bp; the length of the upstream and downstream 

sequences of the SSR was 100 bp, and 12 bp was the 
minimum distance between two SSR sequences. The 
third module is to use Primer3 (a software that designs 
primers	under	Linux	or	UNIX	systems)	to	design	prim-
ers (Rozen and Skaletsky 2000). The detected microsat-
ellite primer sequences were further screened, and the 
screening criteria were as follows: the SSR units were 
repeated more than 6 times; the length of the SSR units 
ranges from 3 to 10 bp; the expected length of the PCR 
product was between 130 and 300 bp; the sequence 
of four consecutive bases was excluded. The selected 
primers were suitable for synthesizing SSR primers to 
verify primer polymorphism.

Microsatellites	were	verified	through	PCR	and	electro-
phoresis.	Each	25	μL	PCR	amplification	system	contained	
the	following	reagents:	17.25	μL	ultrapure	water,	2.5	μL	
10	×	PCR	buffer,	2	μL	dNTPs,	1	μL	each	primer	(5	μmol	
· L–1),	0.25	μL	Taq	polymerase,	and	1	μL	template	DNA.	
The PCR reactions ran for 5 min at 94°C, followed by 38 
cycles of 45 s at 94°C, 45 s at the annealing temperature 
(Table 1), and 45 s at 72°C in a thermal cycler. Cycling 
was	followed	by	a	final	extension	step	at	72°C	for	10	min.	
The	PCR	product	was	 incubated	 at	 4°C.	The	 amplified	
PCR product was electrophoresed on an 8% non-dena-
turing polyacrylamide gel at 14 W for 3–4 h, and it was 
shown by silver staining (Lin et al. 2015). The allele size 
was	identified	according	to	the	20	bp	DNA	ladder.

Table 1. Characteristics of microsatellite loci in Chaeturichthys stigmatias from China.

Locus
Primer	sequence	(5′→3′) Repeat 

motif
Ta 
[°C]	

Expected 
product 

length	[bp]
Na Ho He PIC

Forward Reverse

MW29 ACTAATTAGCATTCAGCACCAGC GTCATGCACAGTGACACCATAAT (TG)15 58.3 135 7 0.000 0.823 0.778
MW31 TGATCGACAATGGAAATGTAATG TATTTCTATAGCCACAGCTGCCT (TG)7 56.4 145 13 0.292 0.895 0.866
MW32 TAAAGTGCCGTAACAAGTTGGAT CGTCATGATTTCAGGAAGTAACA (TA)10 55 144 9 0.042 0.870 0.836
MW34 AAGTGTCTATTCTGAGCGCACTT TTGCAGTGATGAATCAAACATTC (GAT)8 58.3 153 9 0.292 0.878 0.844
MW40 TCTGCATCTTCTGAACTTCACCT CTCTGAAACACACGTCACACCT (GC)7 56.4 156 11 0.333 0.894 0.862
MW54 ATAGAAGGGACTTCAGTTGGACC CCATTTAAACTCTGTCAGACCCA (AT)7 56.4 138 6 0.167 0.796 0.749
MW56 TGTATTCTCGCTTACTGCAGCTC TCATTTCTCAGCATTGACTCTCAT (ATA)7 56.4 132 14 0.375 0.883 0.854
MW66 AGAGTGAAAGAACGCACTGACC GACCTTAGTGAGAGTGTGCGTGT (CA)9 58.3 140 8 0.458 0.855 0.819
MW72 TGCAAACACTGCTTGTTGTAGTT TGAGCTGATTGTGTTAGTTTGTCA (TA)7 56.4 150 11 0.458 0.903 0.873
MW77 CTGCTGCTGTTGTTACTCAGATG TATCAAGGGCTCACTAAAGGACA (GAG)7 58.3 137 6 0.250 0.821 0.774
MW79 GAAGAGGGAAGAGAGAACCAAAG TTCTTGTCCCAAATTCACTTCTC (GA)9 56.4 160 10 0.417 0.834 0.793
MW80 TTAGACAGGACAGCGTTAGCATT CACAGCAAAGGCTCTGAATACTT (GA)7 56.4 147 13 0.417 0.867 0.834
MW83 GAGACACTGTCAGAGCAGATCCT TAATCAACAGCATGAAGAGCAGA (GCT)7 56.4 148 10 0.500 0.840 0.801
MW86 AAATCCTTCTGCAATTGACTCTG GAGAGGGAGGAAGAGATAATGGA (CT)8 55 139 7 0.167 0.816 0.769
MW87 ACTGCTGCTAGATTTACTGGTGC TATCCTTCATCCTCCTCTTCACA (TAC)8 60.2 157 11 0.417 0.876 0.842
MW88 TTGAGTATATTTCAGCCCGTCTC GCCGTTTGCTCATAACATAAACT (AT)8 56.4 133 13 0.250 0.912 0.884
MW92 TTTGAAAAGGTGCAGGAGATG TGAACTCCACTGCTCTGTGTAAA (CT)15 53.1 136 12 0.708 0.908 0.879
MW97 CACAGCAAACAAAGAAACAACAC TATTACGGAAAGGGTAGGACCAT (TAC)7 58.3 138 12 0.417 0.857 0.826
MW100 TCCCACCACAGAAGTTAAACAGT GCATGTTCCTTACAAAGGTTCAC (TAT)7 55 148 8 0.042 0.840 0.800
MW103 CTTTCTTACTTTCCCGCTCTCTT CATGGAAATGGATAGAAATGGAA (CT)7 55 133 11 0.375 0.889 0.858
MW104 AGGCAAGAAATATCACAGGGACT TCGTGACTCATGGAAATACCAAT (AT)7 55 147 10 0.333 0.860 0.824
MW111 CAGGCCTGTTAGCTTAGCTGTAG CACTGGCACACACAACCTAAATA (AT)12 58.3 139 12 0.542 0.893 0.862
MW113 GTATTTATCCGAGCACGCACTAC TAAACGCACGAACAGTATCGTAA (TG)12 55 156 12 0.833 0.898 0.868
MW115 TTATTTGCCAGTATTGACCCAGT CCAAGCCTCTAAGAGTGTCTGAA (CA)11 49.6 150 9 0.000 0.876 0.841
MW117 TGACGTGTGTAACATTCGTGAGT GAGGGAATGATGTCTGTGATTTC (ACA)8 58.3 151 13 0.417 0.931 0.905
MW118 TTATTGGCCCTCAGTGTGTTATT CCTCGAGGAAATATCAGAGTATCG (TAA)10 55 157 10 0.333 0.874 0.840
MW119 AAATGACGAGACAATTACAACTGAT TTCCTTTGTGTATTATGGAAGTTCA (TA)15 58.3 139 11 0.833 0.886 0.854
MW120 TTTCAGATACACCTCATTGGACC GAAACAACAGCAGTTGCACAAT (AAT)7 60.2 140 13 0.500 0.897 0.867
MW121 TCTGTTTGATGCAGTGACAGAGT CCTCCAGAGAAGGACTCATCAT (TGC)7 58.3 132 12 0.167 0.903 0.873
MW123 TCCATCCTAAACTGAACCAAATG TGAAATGTAGTCAATCTTTGCCA (TTA)7 58.3 154 9 0.125 0.835 0.795

Ta = optimized annealing temperature, Na = number of alleles, Ho = observed heterozygosity, He = expected heterozygosity, PIC = polymorphism information content.
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Data analysis

After statistical analysis, the results were input into Ge-
nepop 4.0 (Rousset 2008). The parameters of SSR primers 
were	calculated,	including	the	mean	value	of	effective	al-
lele number (Na), polymorphism information content (PIC), 
observed heterozygosity (Ho) and expected heterozygosity 
(He), and Hardy–Weinberg equilibrium was also performed.

Ethics statement

We have read the policies relating to animal experiments 
and	confirmed	this	study	complied.	All	procedures	per-
formed in this study were approved by the Institutional 
Animal	Care	and	Use	Committee	of	the	Ocean	Univer-
sity of China.

Result and discussion
High-throughput sequencing and 
quality estimation.

A total of 4.682 Gb high-quality data was obtained, and 
the Q20 and Q30 values were 97.31% and 92.52%, re-
spectively. The RAD-Tag capture rate was 98.03%, and 
the GC content was 39.43%. Genomic GC content had 
a	significant	effect	on	 the	 randomness	of	 second-gener-
ation genome sequencing. Too high (>65%) or too low 
(<25%) GC content will lead to sequencing bias and se-
riously	 affect	 the	 results	 of	 genomic	 analysis.	 The	 GC	
content of Chaeturichthys stigmatias was normal, and 
the	sequencing	quality	was	qualified,	indicating	that	the	
sequencing of the database was successful (Zerbino and 
Birney 2008).

The sequences were clustered and assembled. The to-
tal contig base was 113 171 723 bp, and the total contig 
number was 337 800. The mean value of contig length 
of the assembly sequences was 335 bp, and N50 length 
was 393 bp. The GC content of the assembly result was 
39.04%, which was consistent with the GC content of the 
sequencing clean data, indicating that the assembly result 
was true and reliable (Wang et al. 2017; Gao et al. 2018). 
Subsequently, the variation detection was carried out on 

* Li HM (2014) [New microsatellite satellite markers development based on whole genome sequencing information and its appli-
cation	in	population	genetics	in	large	yellow	croaker.]	Dissertation,	Zhejiang	Ocean	University,	China.	[In	Chinese]

the assembly results. The number of heterozygous SNPs 
in the detected SNPs was 142 307, and the heterozygous 
rate was 82.47%. The high heterozygous SNP and the low 
homozygous SNP values also indicated the reliability of 
the assembly results.

Characterization of microsatellite loci

Based	 on	 the	 RAD-seq,	 the	 total	 number	 of	 identified	
microsatellites was 5829. Among them, there were 5631 
microsatellite loci containing primer fragments (Table 2). 
The trinucleotide repeats were dominant (57.56%), fol-
lowed by dinucleotide repeats (23.30%), tetranucleotide 
repeats (11.79%), pentanucleotide repeats (4.14%), and 
hexanucleotide repeats (3.21%).

The previous studies showed that the dominant repeating 
unit	was	discrepant.	Some	fish	species	were	dinucleotide,	
such as Megalobrama amblycephala Yih, 1955 and Lari-
michthys crocea (Richardson, 1846) (see Wang et al. 2012; 
Zeng et al. 2013; Li unpublished*),	while	some	fish	were	
trinucleotide, such as Acanthogobius hasta (Temminck et 
Schlegel, 1845) and mollusk, Ruditapes philippinarum 
(see Yan et al. 2015; Song et al. 2019). The previous studies 
have suggested that enzymes and other proteins involved 
in various aspects of DNA processing and chromatin re-
modeling	may	be	responsible	for	the	taxonomic	specificity	
of microsatellite abundance. This was manifested in that 
not only the repetitiveness of the genome varies, but also 
the	dominant	microsatellite	types	are	different.	This	might	
indicate that SSRs play an important role in genome evo-
lution, and the process responsible for the generation and 
fixation	of	SSR	has	also	changed	during	evolution	(Toth	et	
al. 2000). In this study, trinucleotide repeats have absolute 
quantitative advantages, and the number of dinucleotide 
repeats was less than half. We speculate that a genetic mu-
tation might occur during the evolution of Chaeturichthys 
stigmatias. Further comparative investigations including 
more species are needed to clarify this point.

The distribution and frequency of microsatellite mo-
tifs were presented in Fig. 1. The AT repeat motif (300) 
was the most frequent among all 11 types of dinucleo-
tide repeat, whereas GC was the least frequent, with only 
one microsatellite locus. The AAT repeat motif (396) was 
the most frequent among all 60 types of a trinucleotide 
repeat. The AAAT repeat motif (55) was the most fre-
quent among all 104 types of tetranucleotide repeat. The 
AATTG repeat motif (56) was the most frequent penta-
nucleotide repeat, and the ATTCTG (35) was the most 
frequent hexanucleotide repeat. Because the repeat types 
of trinucleotide, tetranucleotide, pentanucleotide, and 
hexanucleotide were too dispersed, only the top 30 types 
of loci were selected for illustration in order to show the 
results more clearly. All detailed data was provided in 
Suppl. material 1: Appendix 1 (online resource).

Table 2. Simple sequence repeat (SSR) distribution statistics 
for Chaeturichthys stigmatias from China.

Nucleotide repeat type
Statistics

SSR number Percentage
Di- 1312 23.30
Tri- 3241 57.56

Tetra- 664 11.79
Penta- 233 4.14
Hexa- 181 3.21
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In terms of the frequency of repeating units, there were 
only four distinct types of repeats detected in pentanu-
cleotide and hexanucleotide, and all of them were pre-
dominant at a frequency of a 4-fold repeat. Seven types 
were	identified	and	4-fold	repeat	was	predominant	in	all	
tetranucleotide repeats. The types of repetition frequency 
detected in dinucleotide and trinucleotide were not less 

than 10 types, and 5-fold repeat and 6-fold repeat were 
the main components in dinucleotide and trinucleotide 
respectively (Figs 1, 2).

In this study, the frequency distribution of the repeti-
tion units of dinucleotide, trinucleotide, tetranucleotide, 
pentanucleotide, and hexanucleotide microsatellite were 
mainly 4–10 times, 4–7 times, 4–5 times, 4 times, and 4 

Figure 1. The distribution and frequency of microsatellite motifs of Chaeturichthys stigmatias from China. (A) Frequency of dif-
ferent dinucleotide microsatellite motifs; (B)	Frequency	of	different	trinucleotide	microsatellite	motifs;	(C)	Frequency	of	different	
tetranucleotide microsatellite motifs; (D)	Frequency	of	different	pentabase	microsatellite	motifs;	(E)	Frequency	of	different	hexa-
nucleotide microsatellite motifs.
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times, respectively (Fig. 2). This result showed that the 
frequency of tandem repeats decreased exponentially 
with the increase of repetition unit length, and this was 
consistent with the conclusion proposed by Chen et al. 
(2010) that the number of repeating units was negatively 
correlated with the length of repeating units. According 
to previous studies, slipped-strand mispairing is a ma-
jor mechanism for DNA sequence evolution (Levinson 
and Gutman 1987), and the results of this study can 
be explained as microsatellites with a large number of 
repetitions may be more unstable due to the increase 
of sliding possibility (Ellegren 2004). It was general-
ly believed that there was a certain positive correlation 
between the variation frequency of SSR sites and the 
number of repetition units (Schlötterer 2000). Katti et 
al. (2001) also reported that the mutation rate increases 
gradually with the increase of the length of repeating 
units in eukaryotes.

Detection of primer polymorphism

A gradient PCR experiment was performed on the synthe-
sized 148 pairs of primers, and the optimal temperature of 
each pair of primers was screened. The results showed that 
a	total	of	97	pairs	of	primers	were	successfully	amplified.	
Then after the PCR product was subjected to polyacryl-
amide gel electrophoresis experiments, a total of 30 prim-
ers with polymorphism were screened out. A total of 312 
alleles were detected for 24 individuals at 30 polymorphic 
loci, and the number of alleles per locus ranged from 6 to 
14,	with	the	mean	value	of	effective	alleles	was	10.4.	The	
mean value of expected heterozygosity was 0.870, the ob-
served heterozygosity was 0.349, and the mean value of 
polymorphic information content was 0.836 (Table 1). All 
the	polymorphic	sites	deviated	significantly	from	Hardy–
Weinberg equilibrium (P < 0.05). The PIC was between 

0.749 and 0.905, and all loci showed high polymorphism 
(PIC > 0.5) (Botstein et al. 1980).

In this study, 30 primers with polymorphism were 
screened out as dinucleotide and trinucleotide repeats, 
without tetranucleotide, pentanucleotide, and hexanucle-
otide repeats. Kong et al. (2019) observed that compared 
with trinucleotide and tetranucleotide repeats, dinucleo-
tide	 repeats	 had	 a	 higher	 screening	 efficiency	 and	 poly-
morphism (Kong et al. 2019). However, in recent years, it 
has also been found that the trinucleotide and tetranucle-
otide	 repeats	have	higher	 screening	efficiency	and	poly-
morphism than dinucleotide repeats in Ctenopharyngodon 
idella, Hypophthalmichthys molitrix (Valenciennes, 1844), 
and Cyprinus carpio Linnaeus, 1758 (see Fang et al. 
2018). The higher repetition unit length has the disadvan-
tages of lower repeats, lower sequence richness, and lower 
mutation rate. The better trinucleotide and tetranucleotide 
repeats polymorphisms obtained in other experiments may 
be related to the genome doubling in the long-term evo-
lution of this species (Lu et al. 2009; Fang et al. 2018). 
The	different	 results	may	be	 related	 to	 the	 specificity	of	
species, the randomness of the number and type of prim-
ers selected in the experiment, and the number of samples. 
The above-mentioned results indicated that the SSR re-
peats	which	had	higher	screening	efficiency	and	polymor-
phism may be species-dependent, and the most probable 
SSRs were dinucleotide and trinucleotide repeats. In terms 
of polymorphism, the mean PIC values of dinucleotide 
and trinucleotide repeats microsatellite primers screened 
in this study were 0.836 and 0.835, respectively, with lit-
tle	difference	in	polymorphism.	Therefore,	differences	in	
screening	efficiency	and	polymorphism	may	be	caused	by	
species	differences	or	other	factors	(Kong	et	al.	2019).

The	higher	heterozygote	ratio	reflects	 the	stability	of	
the genetic structure of the population. We found that the 
observed heterozygosity (Ho) of 30 polymorphic sites 
was lower than the expected heterozygosity (He), show-

Figure 2.	Frequency	of	repeating	units	of	different	types	of	microsatellites	of	Chaeturichthys stigmatias from China.
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ing a relative lack of heterozygosity. It was generally 
believed that the loss of heterozygosity was caused by 
geographical isolation, decreased gene exchange between 
populations, and increased inbreeding (Zhao et al. 2009). 
The samples used in this study were collected from the 
Yellow Sea, the Bohai Sea, and the East China Sea. The 
low heterozygosity of Chaeturichthys stigmatias may be 
due	to	geographical	isolation	and	excessive	intraspecific	
hybridization. It was commonly accepted that the expect-
ed heterozygosity (He)	was	a	more	accurate	reflection	of	
the genetic diversity of a population than the observed 
heterozygosity (Ho) (Nei 1978). Therefore, the mean 
value of observed heterozygosity of 0.870 in this study 
showed a high population diversity.

At the same time, according to Hardy–Weinberg 
equilibrium analysis, all the 30 microsatellite loci 
discussed	 in	 this	 study	 showed	 significant	 imbalance,	
which	was	a	common	phenomenon	in	fish	populations,	
such as Siniperca scherzeri Steindachner, 1892 and 
Lutjanus peru (Nichols et Murphy, 1922) (see Dou 
et al. 2015; Paz-García et al. 2017). This result also 
confirmed	that	these	populations	did	not	mate	randomly,	
and non-random sampling was also the reason for the 
deviation of Hardy–Weinberg equilibrium. It was worth 
noting that inbreeding, subgroup structure, genetic 
drift,	overfishing,	Wallund	effect,	and	ineffective	alleles	
should also be considered (Bergh and Getz 1989; Lu et 
al. 2017; Song et al. 2018). The above results indicated 

that	 the	microsatellite	markers	 identified	 in	 this	 study	
have	high	polymorphisms	and	can	be	used	as	effective	
molecular markers to analyze the genetic diversity and 
phylogenetic relations among C. stigmatias.

Conclusion
This study was conducted in combination with high-
throughput	sequencing,	which	also	marks	the	first	analysis	
of the microsatellite characteristics of Chaeturichthys 
stigmatias. In summary, a total of 4.682 Gb high-quality 
sequence	data	was	obtained	and	5631	SSRs	were	identified	
based	on	RAD-seq,	indicating	the	high	efficiency	of	the	
primer development of this technology. The 30 pairs of 
polymorphic primers obtained in this study will provide 
an	 effective	 basis	 for	 the	 future	 comparative	 analysis	
of the genetic structure and genetic characteristics of 
C. stigmatias,	 and	 also	 provide	 a	 significant	 basis	 for	
the development of microsatellite primers using high-
throughput sequencing technology in the future.
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