Research Article
Print
Research Article
Length–weight relations and condition factors of 34 Oxynoemacheilus species (Actinopterygii: Cypriniformes: Nemacheilidae) from Turkish inland waters
expand article infoErdoğan Çiçek, Burak Seçer§, Soheil Eagderi|, Sevil Sungur§
‡ Üniversite Lojmanları, Nevşehir, Turkey
§ Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| University of Tehran, Karaj, Iran
Open Access

Abstract

This study aimed to provide the length–weight relations and condition factors of 34 Oxynoemacheilus species from the inland waters of Turkey: Oxynoemacheilus anatolicus Erk’akan, Özeren et Nalbant, 2008; Oxynoemacheilus angorae (Steindachner, 1897); Oxynoemacheilus argyrogramma (Heckel, 1847); Oxynoemacheilus arsaniasus Freyhof, Kaya, Turan et Geiger, 2019; Oxynoemacheilus atili Erk’akan, 2012; Oxynoemacheilus banarescui (Delmastro, 1982); Oxynoemacheilus bergianus (Derjavin, 1934); Oxynoemacheilus cf. bureschi (Drensky, 1928); Oxynoemacheilus ceyhanensis (Erk’akan, Nalbant et Özeren, 2007); Oxynoemacheilus ciceki Sungur, Jalili et Eagderi, 2017; Oxynoemacheilus cilicicus Kaya, Turan, Bayçelebi, Kalayci et Freyhof, 2020; Oxynoemacheilus cyri (Berg, 1910); Oxynoemacheilus ercisianus (Erk’akan et Kuru, 1986); Oxynoemacheilus eregliensis (Bănărescu et Nalbant, 1978); Oxynoemacheilus euphraticus (Bănărescu et Nalbant, 1964); Oxynoemacheilus evreni (Erk’akan, Nalbant et Özeren, 2007); Oxynoemacheilus frenatus (Heckel, 1843); Oxynoemacheilus germencicus (Erk’akan, Nalbant et Özeren, 2007); Oxynoemacheilus hamwii (Krupp et Schneider, 1991); Oxynoemacheilus hazarensis Freyhof et Özuluğ, 2017; Oxynoemacheilus insignis (Heckel, 1843); Oxynoemacheilus kaynaki Erk’akan, Özeren et Nalbant, 2008; Oxynoemacheilus mediterraneus (Erk’akan, Nalbant et Özeren, 2007); Oxynoemacheilus namiri (Krupp et Schneider, 1991); Oxynoemacheilus nasreddini Yoğurtçuoğlu, Kaya et Freyhof, 2021; Oxynoemacheilus paucilepis (Erk’akan, Nalbant et Özeren, 2007); Oxynoemacheilus samanticus (Bănărescu et Nalbant, 1978); Oxynoemacheilus seyhanensis (Bănărescu, 1968); Oxynoemacheilus seyhanicola (Erk’akan, Nalbant et Özeren, 2007); Oxynoemacheilus simavicus (Balik et Bănărescu, 1978); Oxynoemacheilus theophilii Stoumboudi, Kottelat et Barbieri, 2006; Oxynoemacheilus tigris (Heckel, 1843); Oxynoemacheilus veyselorum Çiçek, Eagderi et Sungur, 2018. Based on the results, the growth coefficient values (b) ranged from 2.770 (O. argyrogramma) to 3.285 (O. theophilii) with an R2 estimate greater than 0.91. Fulton’s condition factor (KF) of the studied fishes ranged from 0.598 (O. insignis) to 1.07 (O. nasreddini) . Relative conditions (KR) were found to have a narrow distribution range (0.856–1.014 with a mean of 1.005). The form factors of these species were calculated between 0.006 and 0.14, with a mean and median value of 0.01. This study represents the first reports of LWRs parameters for 22 species, new maximum total length data were bigger than given in FishBase for 21 species, and first species listing for maximum total length for seven species. The findings of this study provide useful information for further fisheries management and fish population dynamic studies.

Keywords

condition factor, form factor, length–weight relation, loach, Nemacheilidae

Introduction

The Nemacheilidae are small fishes inhabiting the freshwaters of Asia, Europe, and northeastern Africa (Nelson et al. 2016; Sungur et al. 2017). This family has great diversity in Turkish inland waters with 48 species, of which 28 are endemics (Çiçek et al. 2015, 2018, 2020). They do not have commercial value but are important components for aquatic ecosystems (Kottelat 2012; Çiçek et al. 2015, 2018).

The study of the length–weight relation (LWR) of any fish species is a prerequisite for assessing its population characteristics (Le Cren 1951). As a result, LWRs provide fundamental knowledge in fisheries biology, which is required for management and conservation. Few Turkish nemacheilids have LWR data available (Gaygusuz et al. 2012; Erk’akan et al. 2013, 2014; Birecikligil et al. 2016; Özcan and Altun 2016; Yazıcıoğlu and Yazıcı 2016; İnnal 2019; Özdemir et al. 2019); hence, providing such data for these taxa is crucial for their management and conservation (Tabatabaei et al. 2015; Keivany et al. 2016; Jafari-Patcan et al. 2018).

Condition factor is computed using the weight and length of fish species to describe the condition or well-being of fish individuals in a particular water body (Froese 2006). It is assumed that the growth of fish in ideal conditions maintains equilibrium in length and weight and is a useful index for monitoring feeding intensity, age and growth rate, and assessing the status of the aquatic ecosystem where fish live (Radkhah and Eagderi 2015; Zamani-Faradonbe et al. 2015). Based on the above-mentioned background, the presently reported study was conducted to determine the LWRs parameters, condition factors, and form factors of 34 species of the genus Oxynoemacheilus inhabiting inland waters of Turkey. The following species were studied: Oxynoemacheilus anatolicus Erk’akan, Özeren et Nalbant, 2008; Oxynoemacheilus angorae (Steindachner, 1897); Oxynoemacheilus argyrogramma (Heckel, 1847); Oxynoemacheilus arsaniasus Freyhof, Kaya, Turan et Geiger, 2019; Oxynoemacheilus atili Erk’akan, 2012; Oxynoemacheilus banarescui (Delmastro, 1982); Oxynoemacheilus bergianus (Derjavin, 1934); Oxynoemacheilus cf. bureschi (Drensky, 1928); Oxynoemacheilus ceyhanensis (Erk’akan, Nalbant et Özeren, 2007); Oxynoemacheilus ciceki Sungur, Jalili et Eagderi, 2017; Oxynoemacheilus cilicicus Kaya, Turan, Bayçelebi, Kalayci et Freyhof, 2020; Oxynoemacheilus cyri (Berg, 1910); Oxynoemacheilus ercisianus (Erk’akan et Kuru, 1986); Oxynoemacheilus eregliensis (Bănărescu et Nalbant, 1978); Oxynoemacheilus euphraticus (Bănărescu et Nalbant, 1964); Oxynoemacheilus evreni (Erk’akan, Nalbant et Özeren, 2007); Oxynoemacheilus frenatus (Heckel, 1843); Oxynoemacheilus germencicus (Erk’akan, Nalbant et Özeren, 2007); Oxynoemacheilus hamwii (Krupp et Schneider, 1991); Oxynoemacheilus hazarensis Freyhof et Özuluğ, 2017; Oxynoemacheilus insignis (Heckel, 1843); Oxynoemacheilus kaynaki Erk’akan, Özeren et Nalbant, 2008; Oxynoemacheilus mediterraneus (Erk’akan, Nalbant et Özeren, 2007); Oxynoemacheilus namiri (Krupp et Schneider, 1991); Oxynoemacheilus nasreddini Yoğurtçuoğlu, Kaya et Freyhof, 2021; Oxynoemacheilus paucilepis (Erk’akan, Nalbant et Özeren, 2007); Oxynoemacheilus samanticus (Bănărescu et Nalbant, 1978); Oxynoemacheilus seyhanensis (Bănărescu, 1968); Oxynoemacheilus seyhanicola (Erk’akan, Nalbant et Özeren, 2007); Oxynoemacheilus simavicus (Balik et Bănărescu, 1978); Oxynoemacheilus theophilii Stoumboudi, Kottelat et Barbieri, 2006; Oxynoemacheilus tigris (Heckel, 1843); Oxynoemacheilus veyselorum Çiçek, Eagderi et Sungur, 2018.

Material and methods

A total of 1801 specimens of Oxynoemacheilus species were collected between May 2009 and September 2019 from Turkish inland water using an electrofishing device (SAMUS MP750). The sampling year of the species is given in Table 1. After anesthesia, the specimens were preserved in 4% buffered formalin and transported to the laboratory.

Table 1.

Sampling sites and descriptive statistics of length and weight for 34 Oxynoemacheilus species in Turkey.

Species E Habitat Basin Coordinates SY n Total length [cm] Total weight [g] L max in FishBase
Min Max Mean SD Min Max Mean SD
Oxynoemacheilus anatolicus + Dalaman Stream Western Mediterranean 37°08′17′′N, 29°09′21′′E 2018 11 4.5 8.2 6.04 1.28 0.87 5.03 2.33 1.52 5.20
Oxynoemacheilus angorae + Çubuk Stream Kızılırmak 40°20′38′′N, 33°02′21′′E 2017 25 3.8 8.9 7.44 1.32 0.42 5.89 4.01 1.50 8.5
Oxynoemacheilus argyrogramma Keysun Stream Euphrates 37°30′39′′N, 38°06′31′′E 2009 54 4.5 7.3 5.65 0.81 0.74 3.49 1.71 0.69 6.20
Oxynoemacheilus arsaniasus + Haçlı Lake Tigris 39°00′49′′N, 42°20′11′′E 2018 13 4.6 7.2 5.82 0.55 1.08 3.86 2.03 0.64
Oxynoemacheilus atili + Eflatun Pınarı Konya closed 37°49′30′′N, 31°40′27′′E 2018 47 4.3 8.3 6.57 0.94 0.67 5.12 2.66 0.98 7.60
Oxynoemacheilus banarescui + Alaçam Stream Kızılırmak 41°28′21′′N, 35°45′57′′E 2017 63 4.4 7.8 6.04 0.69 0.62 4.03 1.87 0.69 5.30
Oxynoemacheilus bergianus Handere Stream Aras 40°07′36′′N, 42°14′55′′E 2016 43 3.0 8.4 5.28 1.25 0.18 4.52 1.28 0.93 7.60
Oxynoemacheilus bergianus Digor Aras 40°23′38′′N, 43°24′45′′E 2016 74 3.3 8.4 6.12 1.30 0.26 3.98 1.83 0.93 7.60
Oxynoemacheilus cf. bureschi Uluçay Stream Sakarya 40°22′56′′N, 31°46′06′′E 2017 7 5.3 7.7 6.86 0.81 1.07 3.36 2.53 0.80 6.50
Oxynoemacheilus ceyhanensis + Ceyhan River Ceyhan 38°05′35′′N, 36°59′40′′E 2017 50 3.3 7.8 5.56 1.08 0.21 4.56 1.66 0.95 8.80
Oxynoemacheilus ciceki + Sultan Marsh Kızılırmak 38°23′23′′N, 35°21′54′′E 2009 103 4.3 7.5 5.34 0.52 0.42 2.61 0.95 0.34 5.80
Oxynoemacheilus cilicicus + Kızıl Stream Eastern Mediterranean 36°51′27′′N, 34°33′13′′E 2018 105 3.4 9.9 5.60 1.02 0.45 9.10 1.81 1.38
Oxynoemacheilus cyri + Kura River Kura 40°50′32′′N, 42°48′57′′E 2019 31 3.2 8.6 5.85 1.27 0.26 7.33 2.46 1.66 6.80
Oxynoemacheilus ercisianus + Ilıca Stream Van Lake 39°00′15′′N, 43°19′17′′E 2016 103 2.9 7.7 4.09 0.91 0.21 4.53 0.74 0.76
Oxynoemacheilus eregliensis + Melendiz Stream Konya closed 38°19′36′′N, 34°14′20′′E 2019 123 5.1 9.5 6.83 1.23 1.02 7.66 2.91 1.62 10.30
Oxynoemacheilus euphraticus Aşkale Euphrates 39°46′48′′N, 40°26′55′′E 2017 119 2.8 9.3 5.78 0.93 0.17 5.60 1.53 0.81 7.40
Oxynoemacheilus evreni + Ceyhan River Ceyhan 38°15′17′′N, 37°31′56′′E 2016 17 3.1 6.5 5.07 1.05 0.25 2.72 1.44 0.78 9.40
Oxynoemacheilus frenatus Arpaçay Stream Tigris 38°01′21′′N, 40°29′25′′E 2012 31 4.1 8.0 5.56 1.02 0.68 5.83 1.96 1.36 7.50
Oxynoemacheilus germencicus + Kadın Stream Küçük Menderes 38°18′27′′N, 28°10′11′′E 2017 19 5.1 7.8 6.61 0.70 1.18 4.49 2.73 0.86 6.30
Oxynoemacheilus hamwii Orontes River Orontes 36°58′33′′N, 36°51′51′′E 2015 63 3.1 8.4 5.14 1.07 0.22 5.36 1.30 0.96 6.20
Oxynoemacheilus hazarensis + Hazar Lake Euphrates 38°27′08′′N, 39°18′26′′E 2013 13 4.1 7.2 5.85 0.88 0.54 3.23 1.88 0.74 6.50
Oxynoemacheilus insignis Karasu Stream Euphrates 37°22′35′′N, 37°29′22′′E 2017 29 3.4 6.5 5.23 0.82 0.18 1.72 0.91 0.38 12.00
Oxynoemacheilus kaynaki + Input of Dumluca Lake Ceyhan 37°25′57′′N, 40°06′45′′E 2013 82 4.0 7.5 5.85 0.82 0.72 3.85 2.01 0.91 6.80
Oxynoemacheilus mediterraneus + Input of Sücüllü Dam Lake Mediterranean 38°23′22′′N, 31°07′56′′E 2018 144 3.6 7.6 6.13 1.00 0.33 3.39 1.92 0.77 5.80
Oxynoemacheilus namiri Orontes River Orontes 38°23′22′′N, 31°07′56′′E 2016 88 4.1 8.7 6.21 1.02 0.50 7.02 2.64 1.43
Oxynoemacheilus nasreddini + Siyek Stream Akarçay 38°35′10′′N, 30°25′36′′E 2009 77 4.7 9.9 6.99 1.01 0.99 9.45 3.88 1.69
Oxynoemacheilus paucilepis + Mancınık Stream Euphrates 39°12′25′′N, 37°12′04′′E 2018 15 4.2 8.2 6.65 0.96 0.78 5.68 3.19 1.24 7.00
Oxynoemacheilus samanticus + Zamantı Stream Seyhan 38°44′10′′N, 36°24′46′′E 2014 21 4.4 6.6 5.31 0.59 0.65 2.43 1.34 0.48 8.60
Oxynoemacheilus seyhanensis + Zamantı Stream Seyhan 38°43′54′′N, 36°22′46′′E 2015 56 3.3 9.1 4.59 1.10 0.34 8.40 1.20 1.39
Oxynoemacheilus seyhanicola + Ceyhan River Ceyhan 38°05′35′′N, 36°59′40′′E 2015 29 4.2 9.5 6.45 1.32 0.51 7.02 2.36 1.64 4.30
Oxynoemacheilus simavicus + Yağcılı Stream North Aegean 39°19′47′′N, 27°34′07′′E 2017 10 4.8 8.0 6.44 0.87 1.13 5.62 2.93 1.32 7.10
Oxynoemacheilus theophilii Sevişler Dam Lake North Aegean 39°19′47′′N, 27°34′07′′E 2017 54 3.5 7.7 5.38 0.91 0.33 4.56 1.58 0.88 6.60
Oxynoemacheilus tigris Seve Dam Lake Euphrates 36°44′38′′N, 37°14′56′′E 2019 36 3.0 8.4 4.74 0.93 0.18 4.80 0.88 0.77 8.40
Oxynoemacheilus veyselorum Bozkuş Stream Aras 40°37′03′′N, 42°47′04′′E 2016 46 4.6 12.6 9.27 1.96 1.74 15.88 7.77 4.01

In the laboratory, the total length (L) and total weight (W) of each individual were determined using a digital caliper to the nearest 0.1 cm and 0.01 g, respectively. The LWRs were calculated by the method of least squares using the equation

W = aLb

and logarithmically transformed (Froese 2006) into

LogW = loga + b log L

where W is the whole-body weight [g], L is the total length [cm], a is the intercept, and b is the slope. Prior to regression analyses, log–log plots of the length–weight pairs were performed to identify outliers (Froese et al. 2011). Outliers perceived in the log–log plots of all species were evacuated from the regression. Fulton’s condition factor (KF) was estimated using the following formula (Ricker 1975; Froese 2006)

K F = 100WL–3

The relative condition factor (KR) was calculated using the equation of Froese (2006)

K R = W (aLb)–1

The mean condition factor (KM) for a given length is derived from the respective WLR using the formula (Froese 2006)

K M = 100aLb – 3

The form factor (a3:0) can be used to determine whether the body shape of a population or species differs significantly from that of others. It was calculated using the formula (Froese 2006)

a3:0 = 10logaS (b – 3)

where S is the slope of the loga vs. b regression, the mean slope S = a – 1.358 proxy for estimating the form factor (Froese 2006).

The degree of dependence between the variables was computed by the determination coefficient R2. The significance level of R2 was estimated by ANOVA. The Student’s t-test was used to determine whether parameter b is significantly different from the expected or theoretical value of 3 (i.e., b = 3, P < 0.05). All statistical analyses were performed in MS Excel 2016 and Past 3.26.

Results and discussion

The presently reported study provides the LWRs and condition factors of 34 Oxynoemacheilus species. The descriptive statistics of length and weight with the parameters of the LWR; regression parameters a and b, the 95% confidence limits of b; the 95% confidence limits of a; correlation coefficient (R2) and type of growth for the studied species are given in Tables 1 and 2. Based on our collected specimens, new maximum total lengths were recorded for 23 species.

The parameter b of the studied species ranged from 2.770 (O. argyrogramma) to 3.285 (O. theophilii) with the median value of 3.071 (Table 2 and Fig. 1). The value of b generally lies between 2.5 and 3.5 (Froese 2006) though the ideal value of b is 3.0 (Hile 1936). In LWRs, b-values that are higher and lower than 3 indicate positive and negative allometric growth, respectively. According to the b-value, 27 species are isometric; two are negative allometry and five are positive allometry (Table 2). The coefficient of determination (R2) between length and weight varied from 0.91 for O. ciceki to 0.99 for O. cf. bureschi.

Table 2.

Estimated parameters of the length–weight relations (LWR), condition factors, and form factor for 34 Oxynoemacheilus species in Turkey.

Species LWR parameters in this study LWRs in FishBase Fulton’s Condition Relative Condition a3:0
a b R 2 SD of b CI of b GT a b Min Max Mean SD Min Max Mean SD
Oxynoemacheilus anatolicus 0.007 3.168 0.981 0.1460 2.779–3.367 I 0.81 1.15 0.92 0.10 0.90 1.22 1.01 0.10 0.0115
Oxynoemacheilus angorae 0.011 2.903 0.979 0.0997 2.661–3.355 I 0.008 3.0 0.77 1.15 0.91 0.09 0.79 1.22 1.00 0.09 0.0081
Oxynoemacheilus argyrogramma 0.013 2.770 0.949 0.0895 2.607–2.929 –A 0.75 1.18 0.91 0.09 0.85 1.28 1.00 0.09 0.0065
Oxynoemacheilus arsaniasus 0.012 2.923 0.915 0.2693 2.485–3.360 I 0.91 1.13 1.01 0.08 0.90 1.13 1.00 0.08 0.0090
Oxynoemacheilus atili 0.011 2.879 0.978 0.0644 2.738–3.060 I 0.79 1.10 0.89 0.06 0.84 1.21 1.00 0.07 0.0077
Oxynoemacheilus banarescui 0.007 3.113 0.926 0.1130 2.975–3.305 I 0.64 1.07 0.81 0.09 0.79 1.32 1.01 0.11 0.0094
Oxynoemacheilus bergianus 0.007 3.052 0.983 0.0623 2.933–3.160 I 0.56 0.98 0.74 0.07 0.76 1.31 1.00 0.10 0.0080
Oxynoemacheilus bergianus 0.008 2.921 0.989 0.0367 2.830–3.013 –A 0.60 0.92 0.72 0.06 0.86 1.23 1.01 0.08 0.0064
Oxynoemacheilus cf. bureschi 0.006 3.095 0.990 0.1398 2.889–3.630 I 0.72 0.80 0.76 0.03 0.96 1.06 1.00 0.04 0.0085
Oxynoemacheilus ceyhanensis 0.007 3.152 0.950 0.1050 2.971–3.380 I 0.0056 3.13 0.58 1.22 0.86 0.13 0.74 1.41 1.01 0.15 0.0106
Oxynoemacheilus ciceki 0.005 3.129 0.910 0.0980 2.924–3.345 I 0.46 0.73 0.61 0.06 0.77 1.21 1.00 0.09 0.0073
Oxynoemacheilus cilicicus 0.006 3.274 0.946 0.0772 3.066–3.462 +A 0.60 1.44 0.91 0.13 0.70 1.69 1.01 0.14 0.0132
Oxynoemacheilus cyri 0.007 3.199 0.974 0.0980 3.045–3.419 +A 0.79 1.29 1.06 0.14 0.81 1.28 1.01 0.12 0.0138
Oxynoemacheilus ercisianus 0.009 3.041 0.981 0.0420 2.983–3.118 I 0.75 1.09 0.91 0.07 0.82 1.20 1.00 0.08 0.0098
Oxynoemacheilus eregliensis 0.009 2.961 0.973 0.0045 2.876–3.050 I 0.0050 3.20 0.63 1.01 0.83 0.07 0.76 1.22 1.01 0.09 0.0079
Oxynoemacheilus euphraticus 0.008 2.955 0.960 0.0561 2.821–3.082 I 0.0062 2.97 0.42 1.15 0.74 0.07 0.58 1.58 1.01 0.10 0.0069
Oxynoemacheilus evreni 0.008 3.159 0.988 0.0910 3.023–3.417 +A 0.0128 2.79 0.84 1.15 0.98 0.08 0.86 1.20 1.00 0.08 0.0125
Oxynoemacheilus frenatus 0.008 3.111 0.921 0.1695 2.747–3.529 I 0.61 1.60 1.02 0.16 0.62 1.64 1.02 0.16 0.0117
Oxynoemacheilus germencicus 0.007 3.114 0.979 0.1117 2.995–3.342 I 0.85 1.04 0.91 0.05 0.92 1.14 1.00 0.05 0.0106
Oxynoemacheilus hamwii 0.005 3.259 0.913 0.1483 2.939–3.614 I 0.0099 2.66 0.42 1.23 0.81 0.16 0.55 1.56 0.98 0.18 0.0121
Oxynoemacheilus hazarensis 0.011 2.889 0.935 0.2301 2.108–3.500 I 0.68 1.22 0.90 0.12 0.74 1.32 1.01 0.12 0.0076
Oxynoemacheilus insignis 0.006 3.048 0.915 0.1791 2.709–3.524 I 0.0150 2.95 0.46 0.79 0.60 0.10 0.79 1.33 1.00 0.16 0.0064
Oxynoemacheilus kaynaki 0.007 3.148 0.938 0.0902 2.944–3.335 I 0.73 1.14 0.94 0.11 0.79 1.27 1.01 0.11 0.0114
Oxynoemacheilus mediterraneus 0.009 2.944 0.974 0.0403 2.870–3.023 I 0.56 0.96 0.78 0.07 0.73 1.25 1.01 0.09 0.0072
Oxynoemacheilus namiri 0.007 3.188 0.924 0.0985 2.928–3.438 I 0.55 1.58 1.01 0.15 0.58 1.66 1.01 0.15 0.0128
Oxynoemacheilus nasreddini 0.011 2.981 0.932 0.0932 2.812–3.149 I 0.79 1.50 1.07 0.13 0.74 1.41 1.01 0.12 0.0104
Oxynoemacheilus paucilepis 0.009 3.048 0.979 0.1233 2.578–3.198 I 0.87 1.12 1.02 0.07 0.86 1.10 1.01 0.07 0.0108
Oxynoemacheilus samanticus 0.006 3.180 0.972 0.1230 2.824–3.376 I 0.0085 2.92 0.76 0.98 0.86 0.05 0.93 1.13 1.01 0.06 0.0111
Oxynoemacheilus seyhanensis 0.009 3.101 0.977 0.0654 2.962–3.292 I 0.78 1.28 1.00 0.10 0.79 1.24 1.00 0.10 0.0118
Oxynoemacheilus seyhanicola 0.005 3.239 0.975 0.1001 3.092–3.377 +A 0.55 0.95 0.76 0.09 0.71 1.22 1.00 0.10 0.0103
Oxynoemacheilus simavicus 0.007 3.239 0.976 0.1811 2.539–3.604 I 0.0044 3.26 0.92 1.15 1.03 0.08 0.91 1.09 1.00 0.07 0.0139
Oxynoemacheilus theophilii 0.006 3.285 0.954 0.0999 3.168–3.405 +A 0.75 1.33 0.92 0.13 0.83 1.50 1.02 0.13 0.0137
Oxynoemacheilus tigris 0.006 3.143 0.944 0.1318 2.898–3.455 I 0.0046 3.23 0.45 1.03 0.72 0.10 0.62 1.44 1.01 0.14 0.0089
Oxynoemacheilus veyselorum 0.011 2.887 0.972 0.0734 2.756–3.031 I 0.75 1.79 0.91 0.20 0.85 1.90 1.04 0.20 0.0079
Figure 1. 

Box plot of (A) allometric co-efficient b values, (B) Fulton’s condition factor (KF), (C) form factor for 34 Oxynoemacheilus species from Turkey.

The values of KF varied from 0.598 (O. insignis) to 1.070 (O. nasreddini). Clark (1928) showed the relation between KF and the parameters of the respective WLR (Table 2 and Fig. 1). The KM for a given length is derived from the respective WLR (Froese 2006) which ranged from 0.856 to 1.014 with a mean of 1.005. Clark (1928) also demonstrates that if b is not significantly different from 3, KF can be compared directly. Le Cren (1951) proposed the relative condition factor (KR), which accounts for changes in form or condition as length increases and therefore assesses an individual’s divergence from the sample’s mean weight for length. To facilitate such comparisons, Le Cren (1951) introduced the relative condition factor, which compensates for changes in form or condition with an increase in length and thus measures the KR. The values of KR varied from 0.985 (O. hamwii) to 1.041 (O. veyselorum) (Table 2).

The condition factor is an index reflecting interactions between biotic and abiotic factors on the physiological condition of the fishes. Therefore, it can be used as an index to assess the status of the aquatic ecosystem in which fish live (Anene 2005). The results of the KR value indicated good health and better environmental conditions for all the studied species.

The form factor a3:0 can be used to determine whether the body shape of a given population or species is significantly different from others (Froese 2006). The form factor varied from 0.006 to 0.014 for 34 species showing the fishes in the range of the elongated body shape (Table 2 and Fig. 1).

The LWRs of 22 species, provided in this paper, have not hitherto been available in FishBase (Froese and Pauly 2021). The results of this study provide useful information for fisheries management, fish population dynamic studies, and comparisons in future studies.

Acknowledgments

This work was financially supported by the Scientific Research Foundation of the Nevşehir Hacı Bektaş Veli University (Grant No. BAP-16).

References

  • Anene A (2005) Condition factor of four cichlid species of a man-made lake in Imo State, Southeastern Nigeria. Turkish Journal of Fisheries and Aquatic Sciences 5: 43–47.
  • Birecikligil SS, Çiçek E, Öztürk S, Seçer B, Celepoğlu Y (2016) Length–length, length–weight relationship and condition factor of fishes in Nevşehir Province, Kızılırmak River Basin (Turkey). Acta Biologica Turcica 29: 72–77.
  • Çiçek E, Birecikligil SS, Fricke R (2015) Freshwater fishes of Turkey; a revised and updated annotated checklist. Biharean Biologist 9(2): 141–157.
  • Çiçek E, Fricke R, Sungur S, Eagderi E (2018) Endemic freshwater fishes of Turkey. FishTaxa: Journal of Fish Taxonomy 3(4): 1–39.
  • Clark FN (1928) The weight–length relationship of the California sardine (Sardina caerulea) at San Pedro. Fish Bulletin No. 12, 59 pp.
  • Erk’akan F, Innal D, Özdemir F (2013) Length–weight relationships for ten endemic fish species of Anatolia. Journal of Applied Ichthyology 29(3): 683–684. https://doi.org/10.1111/jai.12140
  • Erk’akan F, Innal D, Özdemir F (2014) Length–weight relationships for some endemic stone and spine loach species in Anatolia. Journal of Applied Ichthyology 30(1): 244–245. https://doi.org/10.1111/jai.12260
  • Gaygusuz Ö, Aydın H, Emiroğlu Ö, Top N, Dorak Z, Gürsoy Gaygusuz Ç, Başkurt S, Tarkan AS (2012) Length–weight relationships of freshwater fishes from the western part of Anatolia, Turkey. Journal of Applied Ichthyology 29(1): 285–287. https://doi.org/10.1111/jai.12015
  • Hile R (1936) Age and growth of the cisco Leucichthys artedi (Le Sueur), in the lakes of the north-eastern highlands, Wisconsin. Bulletin of the United States Bureau of Fisheries 48: 211–317.
  • Jafari-Patcan A, Eagderi S, Mouludi-Saleh A (2018) Length–weight relationship for four fish species from the Oman Sea, Iran. International Journal of Aquatic Biology 6(5): 294–295.
  • Keivany Y, Nezamoleslami A, Dorafshan S, Eagderi S (2016) Length–weight and length–length relationships in populations of Garra rufa from different rivers and basins of Iran. International Journal of Aquatic Biology 3(6): 409–413.
  • Kottelat M (2012) Conspectus cobitidum: An inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei). Raffles Bulletin of Zoology Supplement (26): 1–199.
  • Le Cren ED (1951) The length–weight relationships and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). Journal of Animal Ecology 20(2): 201–219. https://doi.org/10.2307/1540
  • Özcan G, Altun A (2016) Length–weight and length‐length relationships for four freshwater fish species from Gölbaşı Lake (Hatay), Turkey. Journal of Applied Ichthyology 32(6): 1350–1352. https://doi.org/10.1111/jai.13215
  • Özdemir F, Innal D, Erk’akan F (2019) Length and weight parameters of the loach, Oxynoemacheilus veyseli (Nemacheilidae) in Bozkuş creek (Kars-Turkey). Menba Journal of Fisheries Faculty 5(1): 1–5.
  • Radkhah A, Eagderi S (2015) Length–weight relationship and condition factor of mosquitofish (Gambusia holbrooki) in three inland basins of Iran. Poeciliid Research 5(1): 39–43.
  • Ricker WE (1975) Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada Supplement 1(2): 519–529.
  • Sungur S, Jalili P, Eagderi S (2017) Oxynoemacheilus ciceki, new nemacheilid species (Teleostei, Nemacheilidae) from the Sultan Marsh, Kayseri Province, Turkey. Iranian Journal of Ichthyology 4(4): 375–383. https://doi.org/10.22034/iji.v4i4.258
  • Tabatabaei SN, Hashemzadeh Segherloo I, Eagderi S, Zamani M (2015) Length‐weight relationships of fish species in Kordan River (Namak Lake basin), Iran. Journal of Applied Ichthyology 31(4): 800–801. https://doi.org/10.1111/jai.12755
  • Yazıcıoğlu O, Yazıcı R (2016) The length–weight, length–length relationship and condition factor of Angora loach, Oxynoemacheilus angorae (Steindachner, 1897) inhabiting Kılıçözü stream in Kızılırmak River basin (central AnatoliaTurkey). Turkish Journal of Agriculture—Food Science and Technology 4(12): 1165–1168. https://doi.org/10.24925/turjaf.v4i12.1165-1168.973
  • Zamani-Faradonbe M, Eagderi S, Shahbazi-Naserabad S (2015) Length–weight relationships and condition factor of three fish species from Taleghan River (Alborz Province, Iran). Journal of Advanced Botany and Zoology 2(3): 1–3.
login to comment